期刊文献+

基于最小最大概率分割准则的图像阈值分割方法 被引量:2

Image Thresholding Based on Minimax Probability Criterion
原文传递
导出
摘要 最小最大概率机是基于错分概率最小化的新型分类器.文中讨论一维空间两类别最小最大概率问题的求解.以此为基础,给出图像阈值分割最小最大概率分割点的定义,提出设计阈值分割准则函数的方法,同时提出基于最小最大概率准则的阈值分割算法,此算法保证图像阈值分割正确率的下界.实验表明,文中方法是有效的. The minimax probabilistic machine is a classifier based on minimizing the misclassification probability.The problem of 1-dimensional minimax probability machine is firstly discussed.Then a theory on minimax probabilistic image segmentation is presented.A method for developing criterion function for image thresholding is proposed.Meanwhile,the minimax probabilistic image thresholding algorithm is also proposed and it ensures the maximal lower bound for correctly classifying pixels.Experimental results show the effectiveness of the proposed algorithm.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2010年第6期880-884,共5页 Pattern Recognition and Artificial Intelligence
基金 国家863计划项目(No.2007AA1Z158) 国家自然科学基金项目(No.60704047 60903100)资助
关键词 图像阈值分割 最小最大概率 非参数法 Image Thresholding Minimax Probability Non-Parametric Method
  • 相关文献

参考文献11

  • 1Otsu N.A Threshold Selection Method from Gray-Level Histograms.IEEE Trans on System,Man and Cybernetics,1979,9(1):62-66.
  • 2Sahoo P K,Arora G.A Thresholding Method Based on Two-Dimensional Renyi's Entropy.Pattern Recognition,2004,37(6):1149-1161.
  • 3Ng H F.Automatic Thresholding for Defect Detection.Pattern Recognition Letters,2006,27(14):1644-1649.
  • 4Kittler J,Illingworth J.Minimum Error Thresholding.Pattern Recognition,1986,19(1):41-47.
  • 5Kurita T,Otsu N,Abdelmalek N.Maximum Likelihood Thresholding Based on Population Mixture Models.Pattern Recognition,1992,25(10):1231-1240.
  • 6Pal N R,Pal S K.Image Model,Poisson Distribution and Object Extraction.International Journal of Pattern Recognition and Artificial Intelligence,1991,5(3):459-483.
  • 7Pal N R.On Minimum Cross-Entropy Thresholding.Pattern Recognition,1996,29(4):575-580.
  • 8Bazi Y,Lorenzo B,Melgani F.Image Thresholding Based on the EM Algorithm and the Generalized Gaussian Distribution.Pattern Recognition,2007,40(2):619-634.
  • 9Lanckriet G R G,Ghaoui L E,Bhattacharyya C,et al.Minimax Probability Machine // Dietterich T,Becker S,Ghahramani Z,eds.Advances in Neural Information Processing Systems.Cambridge,USA:MIT Press,2002,XIV:801-807.
  • 10Bertsimas D,Popescu I.Optimal Inequalities in Probability Theory:A Convex Optimization Approach.SIAM Journal on Optimization,2005,15(3):780-804.

同被引文献12

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部