摘要
在序支付概念的基础上,采用等级支付函数代替序支付函数的方法,对无法具体赋值的博弈模型可以获得混合策略解,并证明在一定条件下其解收敛于数博弈混合策略解。
The payoffs in ordinal game theory are ordinal utility but not cardinal utility which is the base of the von Neumann's expected utility theory,the mixed strategy equilibrium can't be solved in ordinal game.To overcome this disadvantage,we developed a new concept of grade-ordering.It's proved that the mixed strategy equilibrium of the corresponding grade ordinal game converged to the mixed strategy equilibrium of zero-sum cardinal game so that its results are meaningful and reliable.
出处
《武汉理工大学学报》
CAS
CSCD
北大核心
2010年第24期178-180,共3页
Journal of Wuhan University of Technology
基金
中央高校基本科研业务费专项资金(2010-IV-015)
关键词
序博弈
序支付
等级序支付
混合策略纳什均衡
ordinal game
rank-ordering
grade payoff
mixed strategies Nash equilibria