期刊文献+

基于等级序概念的序支付改进研究

Research of Improvement of Ordering Payoff Function Based on the Concept of Grade Payoff
原文传递
导出
摘要 在序支付概念的基础上,采用等级支付函数代替序支付函数的方法,对无法具体赋值的博弈模型可以获得混合策略解,并证明在一定条件下其解收敛于数博弈混合策略解。 The payoffs in ordinal game theory are ordinal utility but not cardinal utility which is the base of the von Neumann's expected utility theory,the mixed strategy equilibrium can't be solved in ordinal game.To overcome this disadvantage,we developed a new concept of grade-ordering.It's proved that the mixed strategy equilibrium of the corresponding grade ordinal game converged to the mixed strategy equilibrium of zero-sum cardinal game so that its results are meaningful and reliable.
作者 彭凯
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2010年第24期178-180,共3页 Journal of Wuhan University of Technology
基金 中央高校基本科研业务费专项资金(2010-IV-015)
关键词 序博弈 序支付 等级序支付 混合策略纳什均衡 ordinal game rank-ordering grade payoff mixed strategies Nash equilibria
  • 相关文献

参考文献4

  • 1Cruz J B, Simaan J R, M. Ordinal Games and Generalized Nash and Stackelberg Solutions[J ]. Journal of Optimization Theory and Applications, 2000,107(2) :205-222.
  • 2Ho Y C, Cao X R. Perturbation Analysis of Discrete Event Dynamic Systems[ M]. Boston: Kluwer Academic Publishers, 1991.
  • 3Kai P,W Xianjia. Research of Grade Games and Equilibria Based on Grade Payoff[C]//Intemational Conference on Numerical Analysis and Applied Mathematics. [ S. l. ] :American Institute of Physics Press, 2007:308-312.
  • 4Peng Kai. Research of Dominant Approach in Resources Configuration[C]//Prcceedings of the Second International Conference on Game Theory and Applications. [ S. l. ] :World Academic Press, 2007:145-148.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部