期刊文献+

共单调次可加g-估价与生成元g之间的关系

Relationship between g-evaluation with comonotonic subadditivity and generator g
下载PDF
导出
摘要 为了丰富g-估价的理论研究,利用生成元的唯一性定理和表示定理,在Lipschitz条件和g(t,0,0)=0条件下,证明了如果生成元g是凸函数,则对于某一类g-估价满足共单调次可加性当且仅当g-估价系统满足共单调次可加性,当且仅当生成元g是次可加的;当布朗运动的维数为1时,给出了g-估价是共单调次可加的一个必要条件。该结果拓展了具有共单调次可加性的g-期望的已有结论。 This paper is aimed at enriching the theoretical research on g - evaluation by using the generator uniqueness theorem and representation theorem,under the conditions of Lipschitz g(t,0,0) = 0.The research leads to the proof that if the generator g is convex function,then a class of g - evaluation satisfies comonotonic subadditivity if and only if g - evaluation system is comonotonic subadditive if and only if g is subadditive.When the dimension of the brownian motion is one,it gives a necessary condition for the g - evaluation with comonotonic subadditivity.These results expand the conclusions for the g - expectation with comonotonic subadditivity.
出处 《黑龙江科技学院学报》 CAS 2010年第6期477-480,共4页 Journal of Heilongjiang Institute of Science and Technology
关键词 倒向随机微分方程 g-估价 共单调次可加 共单调可加 backward stochastic differential equation g - evaluation comonotonic subadditivity comonotonic additivity
  • 相关文献

参考文献9

  • 1PENG S G.BSDE and related g-expectations[C]//KAROUIE N,MAZLIAK L.Backward Stochastic Differential Equations Pitman Research Notes in Mathematics Series,Harlow:Addison Welsey Longman,1997,364:141-159.
  • 2PENG S G.Nonlinear expectations,nonlinear evaluations and risk measures[C]// FRITI'ELLI M,RUNGGALDIER W.Stochastic Methods in Finance.Lecture Notes in Mathematics.Berlin:Springer,2004(1856):165-253.
  • 3CHEN Z,CHEN T,DAVISON M.Choquet expectation and Peng'a g-expectation[J].The Annals and Probability,2005,33(3):1179-1199.
  • 4JIANG L.A note on g-expectation with comonotonic additivity[J].Statistics & Probability Letters,2006,76(7):1895-1903.
  • 5范胜君.齐次、可加及线性g-估价(英文)[J].数学进展,2008,37(1):67-77. 被引量:2
  • 6徐玉红,刘玉春,高杰.基于g期望的二元Jensen不等式[J].黑龙江科技学院学报,2007,17(3):224-226. 被引量:2
  • 7PARDOUX E,PENG S.Adapted solution of a backward stochas-tic differential equation[J].Systems and Control Letters,1990,14(1):55-61.
  • 8FAN S J.Moment inequality and Holder inequality for BSDEs[J].Acts Mathematicae Applicatae Sinica; English Series,2009,25(1):11-20.
  • 9FAN S J.A note on jensen's inequality for BSDEs[J].Acts Mathematics Sinica,2009,25(10):1 681-1 692.

二级参考文献8

  • 1JIANG LONG,CHEN ZENGJING School of Mathematics and System Sciences, Shandong University, Jinan 250100, China. Department of Mathematics, China University of Mining and Technology, Xuzhou 221008, Jiangsu,China. E-mail: jianglong@math.sdu.edu.cn School of Mathematics and System Sciences, Shandong University, Jinan 250100, China..ON JENSEN'S INEQUALITY FOR g-EXPECTATION[J].Chinese Annals of Mathematics,Series B,2004,25(3):401-412. 被引量:26
  • 2Pardoux, E., Peng S.G., Adapted solution of a backward stochastic differential equation, Systems Control Letters, 19907 14: 55-61.
  • 3Briand, P., Coquet, F., Hu Y., Mdmin J., Peng S.G., A converse comparison theorem for BSDEs and related properties of g-expectation, Election. Comm. Proab., 2000, 5: 101-117.
  • 4Peng S.G., Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-Meyer's type, Probab. Theory and Relat. Fields., 1999, 113: 473-499.
  • 5Peng S.G., A general dynamic programming principle and Hamilton-Bellman equation, Stochastics., 1992, 38(2): 119-134.
  • 6El Karoui, N., Peng S.G., Quence, M.C. Backward stochastic differential equation in finance, Math.Finance., 1997, 7(1): 1-71.
  • 7Chen Z.J., Peng S.G., A general downcrossing inequality for g-martingales, Statistics and Probability Letters, 2000, 46: 169-175.
  • 8江龙.基于g-期望的关于二元函数的Jensen不等式[J].山东大学学报(理学版),2003,38(5):13-17. 被引量:9

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部