摘要
对次对称和次反对称矩阵约束下一类矩阵方程的迭代解法进行了讨论,利用次对称矩阵和次反对称矩阵的结构和性质,分别构造了迭代算法,并用矩阵范数的性质和拉直算子证明了迭代算法的有限步收敛性,从而得到了矩阵方程的极小范数解和最佳逼近解.
The iterative methods of the matrix equations constrained by skew-symmetric matrices and skew-anti-symmetric matrices are studied.The iterative methods are constructed and its limited convergence is proved by means of the properties of matrix's norm and straighten operator and by using their structures and properties.Therefore,the least-norm solution and optimal approximation solution of the matrix equations are obtained.
出处
《吉首大学学报(自然科学版)》
CAS
2010年第5期29-33,共5页
Journal of Jishou University(Natural Sciences Edition)
基金
国家自然科学基金资助项目(10671026)
关键词
约束矩阵方程
迭代解法
极小范数解
最佳逼近解
次对称矩阵
constrained matrix equation
iterative method
least-norm solution
optimal approximation solution
skew-symmetric matrix