期刊文献+

基于主导拮抗抑制的多尺度边缘检测 被引量:1

Multi-scale Edge Detection with Dominating Opponent Inhibition
下载PDF
导出
摘要 图像边缘检测算子的抑噪能力和定位精度是一对矛盾,从视觉神经生理学角度出发,提出一种基于主导拮抗抑制的多尺度边缘检测模型。该模型将主导拮抗抑制机制拓展到多尺度处理,通过引入侧膝体拮抗通道的强抑制机制达到自适应抑噪的效果,获得的对比度信息经过简单细胞子域的非线性整合得到锐化的边缘输出,最后将多个尺度的处理结果进行融合,获得最终的边界轮廓。理论和实验证明通过主导拮抗抑制机制和多尺度处理的结合,获得抑噪能力强、定位精度高的边缘检测模型,该模型具有生理学基础,结构简单,计算效率高。 Noise suppression conflicts with high accuracy in image edge detection.A multi-scale edge detection model with dominating opponent inhibition was proposed from physiological point of view.The presented model made extension of dominating opponent inhibition mechanism to processing at multiple scales.Image noise can be adaptively suppressed by dominating inhibition from the opponent path of lateral geniculate nucleus.Sharp edges were obtained through the non-linear combination of simple cell subfields.Finally multi-scale processing results were combined to obtain boundary contour.Theoretical analysis and experimental results indicate that the proposed model performs well in noise suppression and accurate edge detection through the combination of dominating opponent inhibition and multi-scale processing.Meanwhile,it is biologically plausible,simple and efficient.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2010年第6期53-58,共6页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(60835005) 国防科技大学科研计划资助项目(JC09-03-04)
关键词 主导拮抗抑制 边缘检测 简单细胞 多尺度 dominating opponent inhibition edge detection simple cell multiple scales
  • 相关文献

参考文献12

  • 1Zhang Z,Ma S,Liu H,et al.An Edge Detection Approach Based on Directional Wavelet Transform[J].Computers and Mathematics with Applications,2009,57:1265-1271.
  • 2Basturk A,Gunay E.Efficient Edge Detection in Digital Images Using a Celluar Neural Network Optimized by Differential Evolution Algorithm[J].Expert Systems with Applications,2009,36:2645-2650.
  • 3Yu J,Wang Y,Shen Y.Noise Reduction and Edge Detection Via Kernel Anisotropic Diffusion[J].Pattern Recognition Letters,2008,29:1496-1503.
  • 4Arandiga F,Cohen A,Donat R,et al.Edge Detection Insensitive to Changes of Illumination in the Image[J].Image and Vision Computing,2010,28:553-562.
  • 5Chaira T,Ray A K.A New Measure Using Intuitionistic Fuzzy Set Theory and Its Application to Edge Detection[J].Applied Soft Computing,2008,8:919-927.
  • 6Heggelund P.Receptive Field Organization of Simple Cells in Cat Striate Cortex[J].Experimental Brain Research,1981,42:89-98.
  • 7Hirsch J A,Alonso J M,Reid R C,et al.Synaptic Integration in Striate Cortical Simple Cells[J].The Journal of Neuroscience,1998,18 (22):9517-9528.
  • 8Hansen T,Neumann H.A Simple Cell Model with Dominating Opponent Inhibition for Robust Image Processing[J].Neural Networks,2004,17:647-662.
  • 9Grossberg S,Todorovi'c D.Neural Dynamics of 1-D and 2-D Brightness Perception:A Unified Model of Classical and Recent Phenomena[J].Perception & Psychophysics,1988,43:241-277.
  • 10Neumann H,Pessoa L,Hansen T.Interaction of ON and OFF Pathways for Visual Contrast Measurement[J].Biological Cybernetics,1999,81:515-532.

同被引文献9

  • 1刘曙,罗予频,杨士元.基于多尺度形态学的红外图像边缘检测方法[J].计算机应用,2007,27(4):970-971. 被引量:4
  • 2章毓晋.图像工程:中册[M].北京:清华大学出版社,2005.
  • 3KONISHI S, YUILLE A, COUGHLAN J, et al. Statistical edge de- tection: learning and evaluating edge cues[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 ( 1 ) : 57 - 74.
  • 4MARTIN D R, FOWLKES C C, MALIK J. Learning to detect natu- ral image boundaries using local brightness, color and texture cues [ J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2004, 26(5) :530 -549.
  • 5JULESZ B. Textons, the elements of texture perception, and their interactions [J]. Nature, 1981, 290:91-97.
  • 6RANDEN T, HUSOY J H. Filtering for texture classification: A comparative study [ J]. IEEE Transactions on Pattern Analysis Ma- chine Intelligence, 1999, 21(4) : 291 - 309.
  • 7HAFNER J, SAWHNEY H S, EQUITZ W, et al. Efficient color histogram indexing for quadratic form distance functions [ J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1995, 17 (7) : 729 -736.
  • 8岳思聪,赵荣椿,郑江滨.基于多尺度边缘响应函数的自适应阈值边缘检测算法[J].电子与信息学报,2008,30(4):957-960. 被引量:10
  • 9冯强,于盛林,黄晓晴,张维.一种新颖的有核细胞边缘检测方法[J].中国图象图形学报,2009,14(10):2004-2009. 被引量:5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部