期刊文献+

双摆振动系统的同相振动性

Double pendulum system with the phase oscillation
下载PDF
导出
摘要 采用MIRONENKO的反射函数法研究了双摆振动系统x′=A(t)x与y′=B(t)y的同相振动性,其中A(t)=(aij(t))2×2,B(t)=(bij(t))2×2.假设F(t),G(t)分别为x′=A(t)x,y′=B(t)y的反射矩阵,当A(t+2ω)=A(t),B(t+2ω)=B(t)时,矩阵F(-ω),G(-ω)分别相似于x′=A(t)x,y′=B(t)y的根本矩阵.若特征方程|λE-F(-ω)|=0与|μE-G(-ω)|=0具有相同的特征根,则x′=A(t)x与y′=B(t)y的稳定性相同.文中给出了特征方程|λE-F(-ω)|=0与|μE-G(-ω)|=0具有相同特征根的充分条件. Using the method of reflective function of Mironenko,this paper studies the nature of the synchronous vibration of the double pendulum system,x′=A(t)x and y′=B(t)y,where A(t)=(aij(t))2×2 and B(t)=(bij(t))2×2 are continuous on R.Suppose that F(t) and G(t) are the reflective matrix of system x′=A(t)x and y′=B(t)y respectively.If A(t+2ω)=A(t),B(t+2ω)=B(t),then F(-ω) and G(-ω) are similar to the monodromy matrix of system x′=A(t)x and y′=B(t)y respectively.If the roots of the characteristic equations |λE-F(-ω)|=0 and |μE-G(-ω)|=0 are equal,then the stability of null solution of x′=A(t)x and y′=B(t)y are the same.The sufficient conditions for the existence of the same roots of equations |λE-F(-ω)|=0 and |μE-G(-ω)|=0 are also given.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第4期13-16,33,共5页 Journal of Yangzhou University:Natural Science Edition
基金 江苏省高校自然科学基金资助项目(08KJB110013)
关键词 反射函数 振动系统 同相振动 特征根 reflective function double pendulum system synchronous vibration characteristic root
  • 相关文献

参考文献11

  • 1MIRONENKO V I.Reflecting function and periodic solution of the differential system[M].Minsk:Minsk University Press,1986:9-33.
  • 2MIRONENKO V I.Analysis of reflective function and the investigation of multidimensional differential system[M].Gomel:Gomel University Press,2004:59-180.
  • 3MIRONENKO V I.A reflecting function of a family of functions[J].Differ Eqs,2000,36(12):1794-1800.
  • 4MUSAFIROV E V.Differential systems,the mapping over period for which is represented by a product of three exponential matrixes[J].J Math Anal Appl,2007,329(1):647-654.
  • 5VERESOVICH P P.Nonautonomous second order quadratic system equivalent to linear system[J].Differ Uravn,1998,14(12):2257-2259.
  • 6ZHOU Zheng-xin.The structure of reflective function of polynomial differential systems[J].Nonlinear Anal,2009,71(1/2):391-398.
  • 7ZHOU Zheng-xin.On the qualitative behavior of periodic solutions of differential systems[J].J Compu Appl Math,2009,232(2):600-611.
  • 8周正新.微分系统的反射函数与周期解[J].数学进展,2003,32(4):398-404. 被引量:21
  • 9周正新,颜跃新.多自由度振动系统的同相振动性[J].扬州大学学报(自然科学版),2000,3(2):12-14. 被引量:2
  • 10倪振华.振动力学[M].西安:西安交通大学出版社,1986..

二级参考文献10

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部