期刊文献+

REAL-TIME TRACKING FOR FAST MOVING OBJECT ON COMPLEX BACKGROUND 被引量:3

复杂背景下快速移动目标的实时跟踪(英文)
下载PDF
导出
摘要 A real-time tracking system for the fast moving object on the complex background is proposed.The Markov random filed(MRF)model based background subtraction algorithm is used to detect the changing pixels and track the moving object.The prior probability of the segmentation mask is modeled by using MRF,and the object tracking task is translated into the maximum a-posterior(MAP)problem.Experimental results show that the method is efficient at both offline and online moving objects on simple and complex background. 提出了适用于跟踪在复杂背景下快速移动目标的实时跟踪系统。利用基于马尔可夫场模型的背景减除算法检测像素变化,以跟踪移动目标。分割掩膜的先验概率用马尔可夫场模型来表示,因此目标跟踪任务即被转化成最大后验问题。实验结果表明,本文算法在简单背景或复杂背景下的离线和在线移动目标跟踪方面均有较好的效果。
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第4期321-325,共5页 南京航空航天大学学报(英文版)
关键词 unmanned aerial vechicles real-time tracking Markov random field background subtraction 无人机 实时跟踪 马尔可夫场 背景提取
  • 相关文献

参考文献11

  • 1Elgammal A,,Harwood D,Davis L.Non-parametric model for background subtraction. Proceedings of the6th European Conf on Computer Vision . 2000
  • 2Kentaro T,John K,Barry B,et al.Wallflower:principles and practice of background maintenance. ICCV,Seventh IEEE International Conference on Computer Vision . 1999
  • 3Angelova D,Mihaylova L.Extended object tracking using mixture Kalman filter. 6th International Conference on Numerical Methods and Applications . 2006
  • 4Shiuh Ku Weng,Chung Ming Kuo,Shu Kang Tu.Video object tracking using adaptive Kalman filter. Journal of Visualization . 2006
  • 5Jin Yonggang,Mokhtarian F.Variational particle filter for multi object tracking. IEEE11st International Conference on Computer Vision . 2007
  • 6Rittscher J,Kato J,Joga S,et al.A probabilistic background model for tracking. Proc6th European Conference on Computer Vision . 2000
  • 7Friedman N,Russell S.Image segmentation in video sequences:a probabilistic approach. Thirteenth Conference on Uncertainty in Artificial Intelligence . 1997
  • 8Khalifa Y,Okoene E.A centralized evolutionary target tracking system. Proceedings of the ASEE . 2006
  • 9Grimson W E L,Stauffer C,Romano R,et al.Using adaptive tracking to classify and monitor activities in a site. Proceedings of1998IEEE Computer Society Conference on Computer Vision and Pattern Recognition . 1998
  • 10Stauffer C,Grimson W E L.Adaptive background mixture models for real-time tracking. Proceedings of1999IEEE Computer Society Conference on Computer Vision and Pattern Recognition . 1999

同被引文献43

  • 1杜治全,郑顺义.光束法平差的一种快速算法[J].地理空间信息,2007,5(1):78-80. 被引量:6
  • 2Doretto G, SebastianT, Tu P, et al. Appearancebased person re-identification in camera networks, problem overview and current approaches[J]. J Ambient Intelligence and Humanized Computing, 2011 (2),127-15l.
  • 3Chae Hyun-Uk , Jo Kang-Hyun, Appearance feature based human correspondence under non-overlapping views[C]// Proceedings of 5th International Conference on Intelligent Computing, Emerging Intelligent Computing Technology and Applications. Ulsan , Springer, 2009,635-644.
  • 4Zeng Fanxiang, Liu Xuan , Huang Zhitong , et al. Robust and efficient visual tracking under illumination changes based on maximum color difference histogram and min-max-ratio metric[J]. J Electron Imaging, 2013,22(4),043022.
  • 5Lee Seck-Han. Real-time camera tracking using a particle filter combined with unscented Kalman filters [J]. J Electron Imaging, 2014,23(1) ,013029.
  • 6Madden C, Piccardi M. A framework for track matching across non-overlapping cameras using robust shape and appearance features [C]// Proceedings of IEEE Conference on Advanced Video and Signal Based Surveillance. London, IEEE, 2007: 188-193.
  • 7Takayuki Hori , Jun Ohya , j un Kurumisawa. Identifying a walking human by a tensor decomposition based approach and tracking the human across discontinuous fields of views of multiple cameras[C]// Proceedings of Conference on Computational Imaging VIII. San Jose, SPIE, 2010,75330.
  • 8LinYu-Chih, Yang Bing-Shiang , Lin Yu-Tzu, et al. Human recognition based on kinematics and kinetics of gait [J]. J Medical and Biological Engineering, 2010(31),255-263.
  • 9Trevor Montcalm, Bubaker Boufama. Object intercamera tracking with non-overlapping views: A new dynamic approach[C]//Proceedings of 2010 Canadian Conference Computer and Robot Vision. Ottawa: IEEE,2010:354-361.
  • 10Prosser B, Zheng W, Gong S, et al. Person re-identification by support vector ranking[C]//Proceedings of British Machine Vision Conference. [So I. J: BMVA Press, 2010: 21. 1-21. 11.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部