期刊文献+

扇图的笛卡儿积的测地数(英文)

Geodetic Numbers of Cartesian Products of Fan Graphs
下载PDF
导出
摘要 对于图G内的任意两点u和v,u-v测地线是指u和v之间的最短路.I(u,v)表示位于u-v测地线上所有点的集合,对于V(G)S,I(S)表示所有I(u,v)的并,这里u,v∈S.G的测地数g(G)是使I(S)=V(G)的点集S的最小基数.文章研究了Pm×Fn和Cm×Fn的测地数,这里Pm表示m阶路,Cm表示m阶圈,Fn表示n阶扇图。 For any two vertices u and v in a graph G,a u-v geodesic is a shortest path between u and v.Let I(u,v) denote the set of all the vertices lying on a u-v geodesic.For a vertex subset V(G)S,let I(S)=I(u,v).The geode-tic number g(G) of a graph G is the minimum cardinality of a set S with I(S)=V(G).The main purpose of this paper is to study the geodetic numbers of Pm×Fn and Cm×Fn,where Pm is a path of order m,Cm is a cycle of order m and Fn is a fan graph of order n.
出处 《淮北煤炭师范学院学报(自然科学版)》 2010年第4期1-4,共4页 Journal of Huaibei Coal Industry Teachers College(Natural Science edition)
基金 Supported by National Natural Science Foundation of Anhui(KJ2008A028)~~
关键词 笛卡儿积 测地数 扇图 Cartesian product geodetic number fan graph
  • 相关文献

参考文献3

二级参考文献13

  • 1叶永升,吕长虹,刘庆敏.图的笛卡儿积的测地数(英文)[J].应用数学,2007,20(1):158-163. 被引量:5
  • 2Bonnesens T,Fenchel W.Theorie der Konvexen (K)rper[M].Berlin:Springer,1934.
  • 3Buckley F,Harary F.Distance in Graphs[M].Redwood City,CA:Addison-Wesley,1990.
  • 4Harary F,Nieminen J.Convexity in graph[J].J.Differential Geom,1981,16:185~190.
  • 5Everett M G,Seidman S B.The hull number of a graph[J].Discrete Math.,1985,57:185~190.
  • 6Chartrand G,Harary F,Zhang P.On hull number of a graph[J].Ars Combin,2000,20:129~138.
  • 7Chartrand G,Zhang P.The geodetic number of an oriented graph[J].European J.Combin.,2000,21:181~189.
  • 8Chartrand G,Harary F,Zhang P.On the geodetic number of a graph[J].Netwoks,2002,39:1~6.
  • 9Chang G J,Tong L D,Wang H T.Geodetic spectra of graphs[J].European J.Combin.,2004,25:383~391.
  • 10Chartrand G,Zhang P.The forcing geodetic number of a graph[J].Discuss.Math.Graph Theory,1999,19:45~48.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部