A Smoothed Finite Element Method for the Static and Free Vibration Analysis of Shells
A Smoothed Finite Element Method for the Static and Free Vibration Analysis of Shells
摘要
A four-node quadrilateral shell element with smoothed membrane-bending based on Mindlin-Reissner theory is proposed. The element is a combination of a plate bending and membrane element. It is based on mixed interpolation where the bending and membrane stiffness matrices are calculated on the boundaries of the smoothing cells while the shear terms are approximated by independent interpolation functions in natural coordinates. The proposed element is robust, computationally inexpensive and free of locking. Since the integration is done on the element boundaries for the bending and membrane terms, the element is more accurate than the MITC4 element for distorted meshes. This will be demonstrated for several numerical examples.
参考文献49
-
1S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells (2nd ed.), McGraw-Hill, New York, 1959.
-
2A. W. Leis, Vibration of plates, Nasa SP-160, 1969.
-
3A. W. Leissa, Vibration of Shell, NASA, SP-288, Washington D.C., 1973.
-
4P. L. Gould, Analysis of Shells and Plates, Springer-Verlag, New York, 1988.
-
5E. Reissner, The effect of transverse shears deformation on the bending of elastic plate, Journal of Applied Mechanics 12 (1945) 69-76.
-
6R. D. Mindlin, Influence of rotary inertia and shear in flexural motion of isotropic, elastic plates, Journal of Applied Mechanics 18 (1951) 1031-1036.
-
7T. R. Hughes, The Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 1987.
-
8O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method (5th ed.), Butterworth Heinemann, Oxford, 2000.
-
9T. J. R. Hughes and T. Tezduyar, Finite elements based upon Mindlin plate theory with particular reference to the four-node isoparametric element, Journal of Applied Mechanics 48 (1981) 587-596.
-
10K. J. Bathe and E. N. Dvorkin, A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation, International Journal for Numerical Methods in Engineering 21 (1985) 367-383.
-
1周磊,王同科.两点边值问题基于三次混合插值的超收敛有限体积元方法[J].天津师范大学学报(自然科学版),2013,33(1):13-19.
-
2M.AREFI,R.KARROUBI,M.IRANI-RAHAGHI.Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer[J].Applied Mathematics and Mechanics(English Edition),2016,37(7):821-834. 被引量:7
-
3T. T. Nauven,G. R. Liu,K. Y. Dai,K. Y. Lam.Selective Smoothed Finite Element Method[J].Tsinghua Science and Technology,2007,12(5):497-508. 被引量:4
-
4曹飞龙,夏晟.球面混合插值的逼近性质[J].中国科学:数学,2013,43(1):45-60.
-
5Yigang Zhang.General Interpolation Formulae for Barycentric Blending Interpolation[J].Analysis in Theory and Applications,2016,32(1):65-77.
-
6冯丽娟,钟宏志,郝照平,吴德隆.Free Vibration Analysis of Laminated Composite Beams Using Differential Quadrature Method[J].Tsinghua Science and Technology,2002,7(6):567-573.
-
7Xiong-liang YAO,Dong TANG,Fu-zhen PANG,Shuo LI.Exact free vibration analysis of open circular cylindrical shells by the method of reverberation-ray matrix[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2016,17(4):295-316. 被引量:2
-
8张志立.代数-三角混合Hermite插值法[J].河南大学学报(自然科学版),1998,28(2):43-46.
-
9姜磊,王来,韩婷,李晓蕾,冯丽娜,苏志福.中美混凝土规范中混凝土板挠度模型计算对比研究[J].山东科技大学学报(自然科学版),2013,32(4):97-100. 被引量:1
-
10李威,李诤,柴应彬,韩旭.基于边光滑有限元法的结构振动与稳定性研究[J].噪声与振动控制,2014,34(2):1-4. 被引量:4