期刊文献+

带有收敛因子的PSO-Fisher图像分割的方法

The Convergence Factorial Thresholding Image Segment Based on PSO-Fisher Algorithm
下载PDF
导出
摘要 在大多数的实际应用中,仅仅将图像分成目标和背景两种类型是远远不够的。然而要实现三类、四类以致多类的分割,就必须研究多阈值的分割方法。以研究Fisher单阈值分割法为基础,利用带有收敛因子的PSO算法将Fisher评价函数来进行两阈值分割,最终推广到多阈值的基于Fisher评价函数的图像分割。并通过定误差图像分割实验证明了方法的有效性,保证了算法的收敛。同时证明了选择一个合适的粒子群规模可以使得带有收敛因子的PSO-Fisher算法在尽量少的迭代次数下提高算法的成功率。 In most application,it is not enough to classify imagine into goal and background.It is necessary to study multi-thresholding image segment in order to realize three,four and most type image segment.Two-thresholding and multi-thresholding image segment based on Fisher single-thresholding image segment were studied.The convergence factorial particle swarm optimization(PSO)-Fisher algorithm could assure convergence.The validity of Fisher segmentation method was indicated by fixed error image segmentation,and the convergence of the algorithm was ensured.The segmentation experimental results show that select an appropriate particle size group with a convergence of factors can make PSO-Fisher algorithm to minimize the number of iterations to improve the algorithm's success rate.
作者 张晶阳 刘夏
出处 《化工自动化及仪表》 CAS 北大核心 2010年第12期93-95,共3页 Control and Instruments in Chemical Industry
关键词 阈值分割法 FISHER评价函数 粒子群优化算法 参数选择 thresholding image segment Fisher evaluation function PSO parameter selection
  • 相关文献

参考文献11

二级参考文献102

  • 1李令莱,王凌,郑大钟.基于一类SMSA策略的模型最优降阶[J].控制与决策,2004,19(8):947-950. 被引量:7
  • 2刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 3刘波,王凌,金以慧,黄德先.微粒群优化算法研究进展[J].化工自动化及仪表,2005,32(3):1-7. 被引量:39
  • 4徐志成.基于微粒群优化的鲁棒PID控制器参数整定方法研究[J].化工自动化及仪表,2006,33(5):22-25. 被引量:7
  • 5HONG Y Y, CHANG Y K. Determination of Locations and Sizes for Active Power Line Conditions to Reduce Harmonics in Power Systems[ J ]. IEEE Trans on P D, 1996,11 (3) : 1610 - 1617.
  • 6童梅.智能控制在电力系统谐波抑制中的应用[D].杭州:浙江大学,2001.
  • 7HONG Y Y, HSU Y L, et al. Three-phase Active Pover Line Conditioner Planning [ J ]. IEEE Proceedings Transmission & Distribution, 1998,145 (3) :281 - 287.
  • 8CLERC M. The Swam and the Queen:Towards a Deterministic and Adaptive Particle Swarm Optimization [ C ]//Proc 1999 ICEC. Washington DC, 1999.
  • 9EBERHART R,SHI Y. Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization[C]//Proceedings of the 2000 Congress on Evolutionary Computation. La Jolla, CA, USA ,2000.
  • 10BAGHZOUZ Y. Effects of Nonlinear Loads on Optimal Capacitor Placement in Radial Feeders[ J ]. IEEE Trans on Power Delivery, 1991,6 ( 1 ) :245 - 251.

共引文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部