期刊文献+

基于工业色谱仪的精馏脱炔烃塔软测量建模 被引量:2

Soft Sensor Modeling of Alkynes Removal Distillation Tower Based on Gas Chromatograph
下载PDF
导出
摘要 提出一种基于工业色谱仪的软测量建模方法,并针对碳五馏分分离过程中的精馏脱炔烃塔塔底成分估计问题,建立了合适的工业软测量模型。介绍了工业色谱仪在线质量检测原理和LM-BP神经网络模型的建立,并利用工业色谱仪在线检测的质量数据进行系统的在线和周期性模型更新,提高了软测量模型的在线估计精度。研究结果表明,基于工业色谱仪的LM-BP神经网络模型是一种有效的软测量建模方法。 The soft sensor modeling method based on gas chromatograph was proposed.In accordance with the task of composition estimation for alkynes removal distillation tower in the process of C5 separation,appropriate soft sensor model was established.The on-line quality detection principle of gas chromatograph and LM-BP neural network modeling was introduced.By adopting on-line quality data from gas chromatograph,on-line optimization of the system and the update of the model were carried out.Thus on-line estimation accuracy of soft sensor mode was enhanced.The result shows LM-BP neural network based on gas chromatograph is an efficient modeling method for soft sensor.
作者 储琴 程明霄
出处 《化工自动化及仪表》 CAS 北大核心 2010年第10期37-40,46,共5页 Control and Instruments in Chemical Industry
关键词 工业色谱仪 软测量 精馏脱炔烃塔 LM-BP神经网络 建模 gas chromatograph soft sensor alkynes removal distillation tower LM-BP neural network modeling
  • 相关文献

参考文献12

二级参考文献38

  • 1马勇,黄德先,金以慧.基于支持向量机的软测量建模方法[J].信息与控制,2004,33(4):417-421. 被引量:37
  • 2穆罕默德.阿塔,祝如松,蒋慰孙.间歇精馏塔塔板效率的在线模式识别[J].信息与控制,1993,22(1):47-49. 被引量:2
  • 3刘传政,袁一.关于化工数据校正问题的研究[J].化学工程,1994,22(6):69-72. 被引量:9
  • 4王旭东,邵惠鹤.神经元网络建模与软测量技术[J].化工自动化及仪表,1996,23(2):28-31. 被引量:30
  • 5蒋慰孙 俞金寿.过程控制工程[M].北京:中国石化出版社,2002.329-337.
  • 6郭天民.多元气-液平衡和精馏[M].北京:化学工业出版社,1983.443-494.
  • 7郭天民.多元气—液平衡和精馏[M].北京:化学工业出版社,1983.443-494.
  • 8Ravdin pm, ct al. A demonstration that breast cancer recurrence can by predicted by neural network analysis[ J ]. Breast Cancer Restreat, 1991 (21) :47-53.
  • 9Micheh De Laurentiis and Peeter M. Bavdin. Survival analysis of censored data: Neural network analysis detection of complex interactions between varivable[J]. Breast Cancer Resarch and Treament, 1994(32) : 113-118.
  • 10White H. Commentionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mapping[ J ]. Neural Networks, 1990(3).

共引文献87

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部