期刊文献+

基于快速高斯核函数模糊聚类算法的图像分割 被引量:1

Image Segmentation Based on Fast Gauss Kernel Function Fuzzy Clustering Algorithm
下载PDF
导出
摘要 对模糊聚类算法通过引入高斯核函数,平滑图像像素灰度值,从而增强图像分割的抗干扰能力和鲁棒性,并结合阈值模糊聚类算法,提高了图像分割的速度。首先利用阈值模糊聚类法划分初始输入空间,得到模糊规则数及初始聚类中心;然后用高斯核函数平滑图像的像素灰度值;最后用标准模糊聚类算法求解并优化模糊隶属度和聚类中心。将本算法应用于添加噪声的嫦娥一号采集的月球地面灰度图像和Lena灰度图像进行图像分割,仿真结果验证了本方法的鲁棒性、有效性和实用性。 Gauss kernel function was introduced to fuzzy clustering algorithm to smooth the image pixel gray value,thereby the anti-jamming capability and robustness of the image segmentation was enhanced.The speed of image segmentation was improved by combining with the threshold value fuzzy clustering algorithm.First of all,the algorithm started from an initial fuzzy partition of input space by threshold value fuzzy clustering algorithm to get the number of fuzzy rules and the initial clustering center;then the gray level of image was smoothed by Gauss kernel function;at last the fuzzy membership and the clustering center were optimized with the original fuzzy clustering algorithm.The proposed algorithm was applied to the image segmentation of Chang E-1 acquisition gray image of the moon surface and Lena gray image which joined with noise.Simulation results demonstrate the robustness,effectiveness and practicality of the proposed fast Gauss kernel function fuzzy clustering algorithm.
出处 《化工自动化及仪表》 CAS 北大核心 2010年第11期81-84,共4页 Control and Instruments in Chemical Industry
关键词 高斯核函数 阈值模糊聚类 标准模糊聚类算法 图像分割 Gauss kernel function threshold value fuzzy clustering standard fuzzy clustering image segmentation
  • 相关文献

参考文献9

  • 1邵克勇,范欣,张永华,田野.一种基于数据驱动的模糊系统建模方法[J].化工自动化及仪表,2009,36(5):25-28. 被引量:7
  • 2CAI Wei-ling,CHEN Song-can,ZHANG Dao-qiang.Robust Fuzzy Relational Classifier Incorporating the Soft Class Labels[J].Pattern Recognition Letters,2007,28:2250-2263.
  • 3KANG H,PINTI A,VERMEIREN L,et al.Tissue Classification for MRI of Thigh Using a Modified FCM Method[C] //Proceeding of the 29th Annual International Conference of the IEEE EMBS.2007,8:23-26.
  • 4WANG L X.Adaptive Fuzzy Systems and Control[M].Englewood Cliffs,NJ:Prentice-Hall,1994.
  • 5TOLIAS Y A,PANAS S M.Image Segmentation by a Fuzzy Clustering Algorithm Using Adaptive Spatially Constrained Membership Functions[J].IEEE Trans Systems Man Cybernet,Part A,1998,28(3):359-369.
  • 6PHAM D L.Fuzzy Clustering with Spatial Constraints[C] //IEEE Proceedings of the International Conference Image Processing.New York,2002,Ⅱ:65-68.
  • 7AHMED M N,YAMANY S M,MOHAMED N,et al.A Modified Fuzzy C-means Algorithm for Bias Field Estimation and Segmentation of MRI Data[J].IEEE Trans Med Imaging,2002,21:193-199.
  • 8CHEN S C,ZHANG D Q.Robust Image Segmentation Using FCM with Spatial Constraints Based on New Kernel-induced Distance Measure[J].IEEE Trans Systems Man Cybernet,Part B,2004,34(4):1907-1916.
  • 9刘涵,刘丁.基于模糊sigmoid核的支持向量机回归建模[J].控制理论与应用,2006,23(2):204-208. 被引量:17

二级参考文献15

  • 1刘涵,刘丁,李琦.一种遗传—模糊神经网络图像滤波器[J].仪器仪表学报,2004,25(3):310-312. 被引量:3
  • 2周新华,黄道.一种基于蚁群算法的模糊C均值聚类[J].控制工程,2005,12(2):132-134. 被引量:24
  • 3VAPNIK V. The Nature of Statistical Learning Theory [ M].New York: Springer-Verlag, 1995.
  • 4VAPNIK V. An overview of statistical learning theory[J]. IEEE Trans on Neural Network, 1999, 10(5) : 988 -999.
  • 5COURANT R, HILBERT D. Methods of Mathematical Physics[M]//Interscience Publications, New York: Wiley, 1953.
  • 6LIN H T, LIN C J. A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods [ EB/OL ].Technical Report, Department of Computer Science and Information Engineering, National TaiWan University, 2004, available at http://www. csie. ntu. edu. tw/ -cjlin/papers/tanh. pdf.
  • 7SCHOLKOPF B, BURGE C, SMOLA A. Advances in Kernel Methods: Support Vector Machines [ M]. Cambridge, MA: MIT Press, 1998.
  • 8SOIRA E, MARTIN J, CAMPS G, et al, A low complexity fuzzy activation function for artificial neural network [J]. IEEE Trans on Neural Networks, 2003, 14(6) : 1576 - 1579.
  • 9PEREZ-CRUZ F , ARTES-RODRIGUEZ A. A new optimizing procedure for v-support vector regressor [ C] //Proc of Int Conf on Acoustics, Speech and Signal Processing, ICASSP O1. Salt Lake City, UT: IEEE Press, 2001, 2:1265 - 1268.
  • 10李杰,徐勇,朱昭贤,王云峰.模糊C均值算法参数仿真研究[J].系统仿真学报,2008,20(2):509-513. 被引量:19

共引文献22

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部