期刊文献+

基于社会影响模型的观点演化规律研究 被引量:11

Opinion evolution analysis based on social impact model
下载PDF
导出
摘要 通过建立观点演化模型,以计算机仿真为主要手段,发现网络中观点传播的一些新特性.分别从同步和抗毁性的角度分析了不同拓扑结构下的复杂网络观点演化规律.仿真结果表明无标度网络在此社会影响模型下依然显示出其"强壮且脆弱"的双重特性.网络紧密程度的上升能够提高随机网络的抗毁性,却会显著降低无标度网络的抗毁性能.此外侵入策略与噪音在演化过程中也起到重要作用. This paper develops a mathematical model concerning opinion evolution,and studies some corresponding dynamical properties by numerical simulations.Opinion evolution is investigated for different kinds of complex networks in terms of synchronization and invulnerability.By using the proposed social impact model,the results show that scale-free networks own robust-yet-fragile characteristic.The enhancement of network cohesion can increase the invulnerability of random network,but reduce that of scale-free network.Moreover,invasive strategy and noise play important roles in the network evolution.
出处 《系统工程学报》 CSCD 北大核心 2010年第6期755-760,772,共7页 Journal of Systems Engineering
基金 国家自然科学基金资助项目(60874088) 教育部博士点基金资助项目(20070286003)
关键词 复杂网络 拓扑结构 网络演化 侵入策略 噪音 complex network topologic structure network evolution invasive strategy noise
  • 相关文献

参考文献24

  • 1Crokidakis N,Forgerini F L.Consequence of reputation in the Sznajd consensus model[J].Physics Letters A,2010,374(34):3380-3383.
  • 2Lambiotte R,Ausloos M,Holyst J A.Majority model on a network with communities[J].Physical Review E,2007,75(3):030101.(1-4).
  • 3Holme P,Newruan M E J.Nonequilibrium phase transition in the eoevolution of networks and opinions[J].Physical Review E,2006,74(5):056108.(1-4).
  • 4Huang G,Cao J,Qu Y z.The minority's success under majority role[J].Physica A,2009,388(18):3911-3916.
  • 5Ravasz E,Barabasi A L.Hierarchical organization in complex networks[J].Physical Review E,2003,67(2):026112.(1-6).
  • 6Calam S.Real space renormalization group and totalitarian paradox of majority rule voting[J].Physics A,2000,285(1-2):66-76.
  • 7Boccaletti S,Latora V,Moreno Y,et al.Complex networks:Structure and dynamics[J].Physics Reports,2006,424(4-5):175-308.
  • 8Huang G,Cao J,Wang G J,et al.The strength of the minority[J].Physica A,2008,387(18):4665-4672.
  • 9Lewenstein M,Nowak A,Latane B.Statistical mechanics of social impact[J].Physical Review A,1992,45(2):763-776.
  • 10Sznajd W K,Sznajd J.Opinion evolution in closed community[J].Int.J.Mod.Phys.C,2000,11(6):1157-1165.

同被引文献142

引证文献11

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部