期刊文献+

群逆的初等变换计算方法

Method of Elementary Transformation to Compute Group Inverse
下载PDF
导出
摘要 通过矩阵秩方法工具给出了使用初等变换计算矩阵群逆的方法,从理论上统一了奇异矩阵群逆和可逆矩阵逆的计算方法,并给出算例. Method of elementary transformation to compute Group inverse is given by applying the tool of matrix rank method,which integrates the computaion of the group inverse of singular matrix and the inverse of nonsingular matrix theoretically.An example is also present to illustrate this method.
出处 《聊城大学学报(自然科学版)》 2010年第4期49-51,共3页 Journal of Liaocheng University:Natural Science Edition
基金 国家自然科学基金项目(10771073)
关键词 秩方法 群逆 初等变换 rank method group inverse elementary transformation
  • 相关文献

参考文献8

  • 1Ben-Israel A,Greville T N E.Generalized Inverses:Theory and Applications[M].New York John Wiley& Sons,1974.
  • 2Hartwig R E,Shoaf J.Group inverses and drazin inverses of bidiagonal and triangular Toeplitz matrices[J].Austral J Math,A,1997,66:10-34.
  • 3Wang Guo-rong.Weighted Moore-Penrose,Drazin and Group inverse of the Kronecker product,A(×)B,and some applications[J].Linear Algebra Appl,1997(250),39-50.
  • 4蔡静.群逆和Drazin逆的一种新的表达式及其应用[J].数学杂志,2009,29(1):66-72. 被引量:2
  • 5Nacevska B.Iterative meyhods for computing generalized inverses and splitting of operators[J].Appl Math Compu,2009,208:186-188.
  • 6Guo W,Huang T Z.Method of elementary transformation to compute Moore-Penrose inverse[J].Appl Math Compu,2010,216:1 614-1 617.
  • 7TianY.Upper and lowr bounds for ranks of matrix expressions using generalized inverses[J].Linear Algebra Appl,2002,355:187-214.
  • 8Campbell S L,Meyer J C D.Generalized Inverse of Linear Transformations[M].New York:Dover Publications,1991.

二级参考文献6

  • 1Ben-Israel A. , Greville T. N. E.. Generalized inverse: theory and applications[M]. Second Edition. New York: Springer Verlag, 2003.
  • 2Muir T.. A Treatise on the theory of determinants[M]. New York: Dover Publications.2003.
  • 3Brualdi R. A. , Schneider H.. Determinantal identities: Gauss, Schur, Cauchy, Sylvester~ Kronecker, Jaeobi, Binet, Lapplace, Muir and Cayley[J]. Linear Algebra and its Appl. , 1983,52: 769-791.
  • 4李乔.矩阵论八讲[M].上海:上海科学技术出版社,1985..
  • 5何旭初 孙文瑜.广义逆矩阵引论[M].南京:江苏科学技术出版社,1990..
  • 6蔡静,陈果良.关于A^+,A_(MN)^+的表达式及其应用[J].高等学校计算数学学报,2002,24(4):320-326. 被引量:6

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部