期刊文献+

管束间压差波动信号的混沌特性研究 被引量:1

Chaotic Characteristics Analysis of Differential Pressure Fluctuating Signal across Tube Bundles
下载PDF
导出
摘要 以空气-水为实验介质,采集了不同流型工况下气液两相流体向上横掠水平管束时的压差波动信号,将每一组压差信号作为一组时间序列,对其进行混沌特性分析,包括关联维数的求取与HURST指数的分析。结果表明,空气-水向上横掠水平管束的压差波动信号具有混沌特征,能够用来表征气液两相流的典型流型。 With air and water for the test medium,the differential pressure fluctuations are measured at different flow regime across tube bundles. The differential pressure fluctuations signal each group was extracted to compose the time series,then its chaos were analyzed,including to analyze the correlation dimension and the index of HURST index. The test results showed that the differential pressure fluctuations signal of gas-water two-phase flow across the vertical upward tube bundle was of chaos characteristics, which could be well used to characterize the two-phase flow type of a flow.
出处 《东北电力大学学报》 2010年第6期15-19,共5页 Journal of Northeast Electric Power University
关键词 压差信号 关维数 HURST指数 混沌特性 differential pressure fluctuation correlation dimension HURST Index chaos characteristic
  • 相关文献

参考文献9

二级参考文献94

共引文献92

同被引文献22

  • 1金宁德,陈万鹏.混沌递归分析在油水两相流流型识别中的应用[J].化工学报,2006,57(2):274-280. 被引量:16
  • 2金宁德,苗龄予,李伟波.气液两相流差压测量波动信号的符号序列统计分析[J].化工学报,2007,58(2):327-334. 被引量:11
  • 3王改云,马姝靓.典型混沌系统的Matlab仿真实现[J].中国科技信息,2008(3):252-253. 被引量:8
  • 4CHEN S W, LIU Y, HIBIKI T, et al. Experimental study of air-water two-phase flow in an 8×8 rod bundle under pool condition for one-dimensional drift-flux analysis[J]. International Journal of Heat and Fluid Flow, 2012, 33(1):168-181.
  • 5LETZEL H M, SCHOUTEN J C, KRISHNA R, et al. Characterization of regimes and regime transitions in bubble columns by chaos analysis of pressure signals[J]. Chemical Engineering Science, 1997, 52(24):4447-4459.
  • 6LIU M, HU Z. Studies on the hydrodynamics of chaotic bubbling in a gas-liquid bubble column with a single nozzle[J]. Chemical Engineering & Technology, 2004, 27(5):537-547.
  • 7PINCUS S M. Approximate entropy as a measure of system complexity[J]. Proceedings of the National Academy of Sciences, 1991, 88(6):2297-2301.
  • 8RICHMAN J S, MOORMAN J R. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2000, 278(6):H2039-H2049.
  • 9COSTA M, GOLDBERGER A L, PENG C K. Multiscale entropy analysis of complex physiologic time series[J]. Physical Review Letters, 2002, 89(6):068102.
  • 10ZHOU Y L, HOU Y D, LI H W, et al. Flow pattern map and multi-scale entropy analysis in 3×3 rod bundle channel[J]. Annals of Nuclear Energy, 2015, 80:144-150.

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部