期刊文献+

一种改进相似度参数估计的半监督谱聚类算法

Improved Similarity Parameter Estimation for Semi-supervised Spectral Clustering Algorithm
下载PDF
导出
摘要 谱聚类算法的相似度参数对聚类效果有着至关重要的影响。本文将启发式思想引入到相似度计算中,通过对距离矩阵的搜索,找到数据的合理分界点,并利用它得到相似度计算时所需的参数。同时利用成对限制先验信息引导聚类过程,从而提高聚类效果。数据实验验证本文所提方法是可行的,并且具有很好的聚类效果。 Similarity parameter of spectral clustering algorithm plays an important role in clustering effectiveness. This paper introduces a heuristic technique into a spectral clustering algorithm to learn similarity parameter. The reasonable boundary point can be found by searching distance matrix. The pairwise constrains prior information is used to conduct clustering process. Experiment results show that the proposed method is feasible and can yield the better clustering effect.
出处 《东北电力大学学报》 2010年第6期82-86,共5页 Journal of Northeast Electric Power University
基金 吉林省科技发展计划项目(20080172) 东北电力大学博士科研启动基金(BSJXM-200911)资助
关键词 谱聚类 半监督 成对限制先验信息 spectral clustering semi-supervised the pairwise constrains prior information
  • 相关文献

参考文献10

  • 1Demiriz A,Benneit K P,Embrechts M J.Semi-Supervised clustering using genetic algorithm[C].In:Artificial Neural Networks in Engineering(ANNIE-99),Nov.7-10,New York,1999:809-814.
  • 2Bilenko M,Basu S,Mooney R J.Integrating constraints and metric learning in semi-supervised clustering[C].In:The 21 st Int' 1 Conf onMachine Learning (ICML 2004),July 4-8,Banff,2004:81-88.
  • 3Basu S,Bilenko M,Mooney R J.A probabilistic framework for semi-supervised clustering[C].In:The 10th ACM SIGKDD Int' 1 Conf onKnowledge Discovery and Data Mining(ICDD 2004),Aug.22-25,Sestde,2004:59-68.
  • 4Klein D,Kanvar S D,Manning C.From instance-level constraints to space-level constraints:Making the most of prior knowledge in data clue-tering[C].In:The 19th Int' l Conf on Machine Lesming(ICML2002),July 8-12,Sydney,2002:307-314.
  • 5Bar-Hillel A,Hertz T,Shental N,Weinshall D.Learning distance functions using equivalence relations[C].In:Proceedings of 20th Interns-tional Conference on Machine Learning,Aug.21-24,Washington DC,2003:11-18.
  • 6Shi J B,Malik J.Normalized cuts and image segmentation[J].IEEE Tianaaction.Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
  • 7Ng A Y,Jordan M L,Weiss Y.On spectral clustering:Analysis and algorithm[C].In:Advances in Neural Information Processing Systems14,Dec.3-g,Canada,2001:849-856.
  • 8王玲,薄列峰,焦李成.密度敏感的半监督谱聚类[J].软件学报,2007,18(10):2412-2422. 被引量:95
  • 9Wagstaff K,Cardie C.Clustering with instance-Revd constrains[C].In the 17th Int' l Cod.on Machine Learning,Dec.9-14,Canada.2000:1103-1110.
  • 10Kamvar S D,Klein D,Manning C D.Spectral learning[C].In:Proceedings of UCAI-03,Aug.9-12,Mezico,2003:561-566.

二级参考文献14

  • 1Yu SX, Shi J. Segmentation given partial grouping constraints. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004, 26(2): 173-183.
  • 2Hertz T, Shental N, Bar-Hillel A, Weinshall D. Enhancing image and video retrieval: Learning via equivalence constraint. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Madison: IEEE Computer Society, 2003.668-674.
  • 3Wagstaff K, Cardie C, Rogers S, Schroedl S. Constrained K-means clustering with background knowledge. In: Brodley CE, Danyluk AP, eds. Proc. of the 18th Int'l Conf. on Machine Learning. Williamstown: Morgan Kaufmann Publishers, 2001. 577-584.
  • 4Klein D, Kamvar SD, Manning CD. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In: Sammut C, Hoffmann AG, eds. Proc. of the 19th Int'l Conf. on Machine Learning. Sydney: Morgan Kaufmann Publishers, 2002. 307-314.
  • 5Wagstaff K, Cardie C. Clustering with instance-level constraints. In: Langley P, ed. Proc. of the 17th Int'l Conf. on Machine Learning. Morgan Kaufmann Publishers, 2000. 1103-1110.
  • 6Zhou D, Bousquet O, Lal TN, Weston J, Scholkopf B. Learning with local and global consistency. In: Thrun S, Saul L, SchSlkopf B, eds. Advances in Neural Information Processing Systems 16. Cambridge: MIT Press, 2004. 321-328.
  • 7Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000,22(8): 888-905.
  • 8Gu M, Zha H, Ding C, He X, Simon H. Spectral relaxation models and structure analysis for k-way graph clustering and bi-clustering. Technical Report, CSE-01-007, Penn State University, 2001.
  • 9Ng AY, Jordan MI, Weiss Y. On spectral clustering: Analysis and an algorithm. In: Dietterich TG, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems (NIPS) 14. Cambridge: MIT Press, 2002, 894-856.
  • 10Meila M, Xu L. Multiway cuts and spectral clustering. Technical Report, 442, University of Washington, 2004.

共引文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部