摘要
证明了与扩张矩阵M∈Mn(R),有限子集D Rn相关的自仿测度μM,D是由迭代函数系{φd(x)=M-1(x+d)}d∈D所惟一确定的,其中μM,D的非谱问题之一就是估计L2(μM,D)空间中指数正交系的个数并且找到它们.讨论了如果pi∈2Z+1,|pi|>1(i=1,2,3),p1 3,M=(p10 00p200 0p3),D=(000,100,l00)(l∈3Z+2,且l{0,1}),那么L2(μM,D)中至多存在3个指数正交系,而且数字3是最好的.
The self-aft'me measure μM,D corresponding to an expanding matrix M∈Mn(R) and a finite subset D Rn is uniquely determined by the iterated function system One of the non-spectral problem on μM,D is to estimate the number of orthogonal exponentials in L2 (μM,D ) and to find them. It is proved that if
, then there are at most 3 mutually orthogonal exponentials inLz (μM,D ) , and the number 3 is the best.
出处
《纺织高校基础科学学报》
CAS
2010年第4期464-467,共4页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金资助项目(10871123)
关键词
迭代函数系
非谱测度
指数正交系
iterated function system (IFS)
non-spectral measure
orthogonal exponentials