期刊文献+

两种SPH算法在模拟不可压缩流中的比较 被引量:1

Comparisions of Two Different SPH Algorithms in Simulating Incompressible Flow
下载PDF
导出
摘要 基于二维腔剪切流模型,对弱可压缩光滑粒子流体动力学(WCSPH)和不可压缩光滑粒子流体动力学(ISPH)两种SPH算法进行了对比分析。分别使用了排斥力方法与静态粒子法来设置边界。结果显示:ISPH算法在计算速度场和压力场时,计算精度均较WCSPH算法高;时间步长不像WCSPH算法受声速的限制,计算效率更高。 Two different SPH algorithms were employed to simulate lid-driven cavity with two different boundary conditions.The repulsive boundary and static particle boundary were set.The algorithms were weakly compressible smoothed particle hydrodynamics(WCSPH) and incompressible smoothed particle hydrodynamics(ISPH).The results showed that it was more accurate with ISPH algorithm than with WCSPH algorithm in simulating the velocity field as well as the pressure field,and the ISPH algorithm was more efficient than the WCSPH did.
出处 《南昌大学学报(工科版)》 CAS 2011年第1期69-73,共5页 Journal of Nanchang University(Engineering & Technology)
基金 国家自然科学基金资助项目(50863003) 江西省研究生创新专项资金资助项目(YC09A037)
关键词 无网格粒子方法 不可压缩光滑粒子流体动力学 弱可压缩光滑粒子流体动力学 压力泊松方程 meshfree particle method incompressible smoothed particle hydrodynamics weakly compressible smoothed particle hydrodynamics pressure poission equation
  • 相关文献

参考文献21

  • 1! LUCY L B. A numerical approach to the testing of the fist / sion hypothesis[ J] . Astrophys J, 1977,82(12) : 1013 -1024.
  • 2G1NGOLD R A, MONAGHAN J J. Smoothed particle hy- drodynamics:theory and application to non-spherical stars [J]. Mon Not R Astron Soc,1977,181 (2) :375 -389.
  • 3LIU M B, LIU G R, LAM K Y. Investigations into water mitigation using a meshless particle method [J]. Shock Waves ,2002,12(3 ) : 181 - 195.
  • 4LIBERSKY L D, PETSCHEK A G. Smooth particle hydro- dynamics with strength of materials, In : Advances in the free-lagrange method [ M ]. New York. Springer, 1991 ~ 248 - 257.
  • 5JOHNSON G R, STRYK R A, BEISSEL S R. SPH for high velocity impact computations [ J ]. Comput Methods Appl Mech Eng, 1996,139(1/2/3/4) :347 - 374.
  • 6CLEARY P W, MONAGHAN J J. Conduction modelling using smoothed particle hydrodynamics [ J ]. Journal of Computational Physics, 1999,148 ( 1 ) :227 - 264.
  • 7LI S F, LIU W K. Meshfree and particle methods and their applications [ J ]. Appl Mech Rev,2002,55 ( 1 ) : 1 - 34.
  • 8张锁春.光滑质点流体动力学(SPH)方法(综述)[J].计算物理,1996,13(4):385-397. 被引量:84
  • 9张雄,宋康祖,陆明万.无网格法研究进展及其应用[J].计算力学学报,2003,20(6):730-742. 被引量:109
  • 10MONAGHAN J J. Simulating free surface flows with SPH [ J]. Journal of Computational Physics, 1994, 110 ( 2 ) : 399 - 406.

二级参考文献124

  • 1张锁春.光滑质点流体动力学(SPH)方法(综述)[J].计算物理,1996,13(4):385-397. 被引量:84
  • 2贝新源,岳宗五.三维SPH程序及其在斜高速碰撞问题的应用[J].计算物理,1997,14(2):155-166. 被引量:31
  • 3张锁春,天文学进展,1996年,14卷,149页
  • 4蒋伯诚,高科技研究中的数值计算,1995年
  • 5Cordes L W, Moran B. Treatment of material discontinuity in the element-free Galerkin method[J]. Comput Methods Appl Mech Engrg,1996,139:75-89.
  • 6Zhang X,Lu M W,Wegner J L. A 2-D meshless model for jointed rock structures[J]. Int J Numer Methods Engrg,2000,47(10):1649-1661.
  • 7Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method[J]. Comput Methods Appl Mech Engrg,1996,139:49-74.
  • 8Organ D, Fleming M, Terry T. Continuous meshless approximations for nonconvex bodies by diffraction and transparency[J]. Comput Mech,1996,18:225-235.
  • 9Smolinski P, Palmer T. Procedures for multi-time step integration of element-free Galerkin methods for diffusion problems[J]. Comput Struct,2000,77:171-183.
  • 10Onate E, Idelsohn S, Zienkiewicz O C, et al. A finite point method in computational mechanics: Applications to convective transport and fluid flow[J]. Int J Numer Methods Engr,1996,39:3839-3866.

共引文献184

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部