期刊文献+

绝对平均有界数列空间A_(ab)(K)

Absolutely Average Bounded Number Sequence Space A_(ab)(K)
下载PDF
导出
摘要 提出了绝对平均有界数列的概念,并由此定义了实(或复)数域K上绝对平均有界的数列空间Aab(K),这是一个介于有界数列空间l∞和近似有界数列空间Ab(K)之间的空间.给出了数列绝对平均有界性的等价条件,证明了空间Aab(K)是不可分的、不自反的、不具有Krern-Mil'man性质和Radon-Nikod m性质的Banach空间. Based on the absolutely average convergence of a number sequence,the concept of absolutely average bounded number sequence is given.Space Aab(K) is defined as absolutely average bounded number sequences over the real or complex scalar field K,which is a space between space l∞ of bounded number sequences and space Ab(K) of approxmatively bounded number sequences.Moreover,that an equivalent condition of a number sequence is absolutely average bounded is given,and space Aab(K) is a non-separable,non-reflexive Banach space which has neither the Kren-Mil'man property nor Radon-Nikodm property are proved.
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期141-145,共5页 Journal of Inner Mongolia University:Natural Science Edition
基金 内蒙古自然基金资助项目(批准号:200208020105 200308020101)
关键词 绝对平均有界数列 空间Aab(K) Radon-Nikodm性质 Krern-Mil'man性质 absolutely average bounded number sequence the space Aab(K) Radon-Nikodm property Kren-Mil'man property
  • 相关文献

参考文献7

  • 1王建午.关于近似收敛数列空间.内蒙古大学学报:自然科学版,1961,:1-12.
  • 2Diestel J, UHL J J. Vector Measures [M]. Rhode Island: Amer. Math. Soc. , 1977.
  • 3刘德,葛诚.关于Krein-Milman性质和Radon-Nikodym性质的等价性(Ⅱ)[J].内蒙古大学学报(自然科学版),1996,27(6):748-754. 被引量:1
  • 4Schachermeyer W. The Radon-Nikodum property and the Krern-Mil'man property are equivalent for strongly regular sets[J]. Trans. Amer. Math. Soc. , 1987,303 : 673-687.
  • 5罗成,刘德,于素芬.关于RNP和SCS的若干等价条件[J].应用泛函分析学报,2004,6(4):347-350. 被引量:1
  • 6Wilansky A. Modern Methods in Topological Vector Spaces[M]. New York: Me GranHill, 1978.
  • 7Taylor A E, Lay D C. Introduction to Functional Analysis[J]. Canada:John Wiley, 1980.

二级参考文献7

  • 1刘德,葛诚.关于Krein-Milman性质和Radon-Nikodym性质的等价性(Ⅰ)[J].内蒙古大学学报(自然科学版),1996,27(5):610-617. 被引量:1
  • 2刘德,内蒙古大学学报,1996年,27卷,5期,610页
  • 3Ho A,Pacific J Math,1982年,98卷,347页
  • 4Lindenstrauss J, Tzafriri L. Classical Banach Spaces Ⅱ [M]. New York: Springer-Verlag, 1979. 1- 14.
  • 5Schachermayer W. The Radon-Nikodym property and the Krein-milman property are equivalent for strongly regular sets[J]. Trans Amer Math Soc, 1987, 303: 673-687.
  • 6Rosenthal H P. On the structure of non-dentable closed bounded convex sets[J]. Adv Math, 1988, 70: 1-58.
  • 7Ghoussoub N, Godefroy G, Maurey B, Schachermayer W. Some topological and geometrical structures in Banach spaces[J]. Men Amer Math Soc, 1987, 70(378): 1-116.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部