期刊文献+

计算机辅助诊断系统在临床实践中的应用 被引量:1

Application of a computer aided diagnosis system in clinical practice
下载PDF
导出
摘要 先进的图像技术和计算机科学已经大大加强了医学图像的表达,并且对早期诊断也有突出贡献。从CT片子上可以观察到常人、肝囊肿病人以及肝癌病人具有的特征。最后,利用自适应概率统计模型建立肺癌识别模型和非肺癌识别模型。结果表明,结合人工智能的计算机医学图像分析可以对更多的实际诊断做出贡献。 Advances in imaging technology and computer science have greatly enhanced interpretation of medical images,and contributed to early diagnosis.In this paper,the first one focuses on the differentiation between symptomatic and asymptomatic carotid atheromatous plaque.The second one is able to characterize liver tissue from CT images as normal,hepatic cyst,hemangioma,and hepatocellular carcinoma.It can use the self-adaptive probabilistic model to build lung cancer and non-cancer recognition models.It is concluded that analysis of medical images in combination with artificial intelligence may contribute to more efficient diagnosis.
作者 宋斐 汪建林
出处 《信息技术》 2011年第3期34-36,共3页 Information Technology
基金 国家科技支撑计划课题(2007BAD33B03)
关键词 计算机辅助诊断 肺癌 自适应概率统计模型 computer aided diagnosis lung cancer self-adaptive probabilistic model
  • 相关文献

参考文献8

  • 1Bemer E S, Ball M J. Clinical decision support system: theory and practice[ Z]. Spring, Berlin, 1998.
  • 2Reeves A, Kostis W. Radiologie Clinics N. Amer[J]. 2000,38 (3) :497.
  • 3Yin T -K, Chiu N -T. IEEE T. Bio.-Eng[J].2004,51(7) :1286.
  • 4Behloul F, Lelivldt B P F, A. Boudraa, et al. IEEE Trans[J]. Med. Imanging,2001,12 : 1302.
  • 5Russ J C. The Image Processing Handbook[ Z]. CRC, Boca Raton, FL, 1992.
  • 6Sabiono D M U, L da F Costa, Rizzatti E G, et al. Real Time Ima ging[ Z]. 2004,10:205.
  • 7Jerebko A K, Malley J D, Franaszek M,et al. Acad. Radiol[J]. 2005,12 (4) :479.
  • 8K Revett, F Goruneseu, M Gorunescu, et al. A breast cancer diagno sis system:a combined approach using rough sets and pmbabilistic neural networks[ C]//Proceedings IEEE EUROCON. Belgrade,Ser bia,2005,2 : 1124 1134.

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部