期刊文献+

反对称次对称的线性方程组的缩减算法

On the Reducibility of Anti-Symmetric and Persymmetric Linear Systems
下载PDF
导出
摘要 充分利用反对称次对称矩阵的性质,研究了反对称次对称的线性方程组Ax=b的缩减算法,给出求该类解方程的缩减算法.2个数值例子说明算法是可行有效的. This research uses the properties of anti - symmetric and persymmetric matrix to investigate the reduc- ibility for the Ax = b where A is anti - symmetric and persymmetric. A new algorithm is obtained. Two numerical examples are reported to illustrate the effectiveness of our algorithms.
出处 《云南民族大学学报(自然科学版)》 CAS 2011年第2期102-106,共5页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 福建省自然科学基金(2009J05001) 福建省教育厅基金(JB09313) 高校博士点基金(20060532014)
关键词 反对称次对称 线性方程组 GMRES算法 缩减算法 anti -symmetric and persymmetric linear system GMRES algorithm reducibility algorithm
  • 相关文献

参考文献9

二级参考文献27

  • 1王斌.非线性方程组的逆Broyden秩1拟Newton方法及其在MATLAB中的实现[J].云南大学学报(自然科学版),2008,30(S2):144-148. 被引量:10
  • 2张磊,谢冬秀.一类逆特征值问题[J].数学物理学报(A辑),1993,13(1):94-99. 被引量:45
  • 3KOUICHI T J, Motohiro Miyamoto. A Globally Convergent Smoothing Newton Method for Nonsmooth Equations and Its Application to Complementarity Problems [ J]. Computational Optimization and Application,2002:81 -101.
  • 4QI L, SUN J. A Nonsmooth Version of Newton's Method [ J ]. Mathematical Programming, 1993,58 (2) :353 - 367 (1993).
  • 5FISCHER A. A Special Newton - type Optimization Method [ J ]. Optimization, 1992:24,269 - 284.
  • 6MA Changfeng, CHEN Xiaohong, The Convergence of a One - step Smoothing Newton Method for P0 - NCP Based on a New Smoothing NCP - function [ J ]. Journal of Computational and Applied Mathematics, 2008,216 ( 1 ) : 1 - 13.
  • 7CHEN B, HARKER P T. Smoothing Approximations to Nonlinear Complementarity Problems [ J ]. SIAM Journal on Optimization, 1997,7(1):403- 420.
  • 8QI L. Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations [ J ]. Math Oper Res, 1993,18 ( 1 ) :227 - 244.
  • 9CHIANG K,CHEN S P.A Stochastic Quasi-Newton Method For Simulation Response Optimization[J].European Journal of Operational Research,2006,173:30-46.
  • 10林成森.数值数值计算方法[M].北京:科学出版社,2007.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部