THE BOUNDEDNESS OF BILINEAR SINGULAR INTEGRAL OPERATORS ON SIERPINSKI GASKETS
THE BOUNDEDNESS OF BILINEAR SINGULAR INTEGRAL OPERATORS ON SIERPINSKI GASKETS
摘要
In the paper we give the boundedness estimate of bilinear singular integral operators on Sierpinski gasket inspired from [ 1 ].
In the paper we give the boundedness estimate of bilinear singular integral operators on Sierpinski gasket inspired from [ 1 ].
参考文献10
-
1Chousionis, V., Singular Integrals on Sierpinski Gaskets, Publ. Mat., 53:1(2009), 245-256.
-
2Christ, M. and Journé, J. L., Polynomial Growth Estimates for Multilear Singular Integral Operators, Acta. Math., 159:1-2(1987), 51-80.
-
3Deng, D. G. and Han, Y. S., Harmonic Analysis on Spaces of Homogeneous Type, Lecture Notes in Mathematics, 1966. Springer-Verlag, Berlin, 2009.
-
4David, G. and Journé, J. L., A Boundeness Criterion for Genralized Caderón-Zygmund Operators, Ann.of. Math. ,120:2(1984), 371-391.
-
5Grafakos, L. and Torres, R. H., On Multilinear Singular Integrals of Calderón-Zygmund type, Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), Publ. Mat., Vol. Extra(2002), 57-91.
-
6Grafakos, L. and Torres, R. H., Multilinear Calderón-Zygmund Theory, Adv, Math., 165:1(2002), 124-164.
-
7Grafakos, L. and Torres, R. H., Discrete Decompositions for Bilinear Operators and Almost Diagonal Conditions, Trans. Amer. Math. Soc., 354:3 (2002), 1153-1176.
-
8Grafakos, L, and Tortes, R. H., Maximal Operator and Weighted Norm Inequalities for Multilinear Singular Integrals, Indiana Univ. Math. J., 51:5(2002), 1261-1276.
-
9Macias, R. A. and Segovia, C., Lipschitz Functions on Spaces of Homogeneous type, Adv. in Math., 33:3(1979), 257-270.
-
10Xu, M., The Boundedness of Some Bilinear Singular Integral Operators on Besov Spaces, J. Korean Math. Sot,, 43:2 (2006), 283-296.
-
1Donglei Tang,Rui Hu.Nonconstant Harmonic Functions on the Level 3 Sierpinski Gasket[J].Analysis in Theory and Applications,2014,30(4):417-424.
-
2吴军.Sierpinski gasket上Brown运动k重时的Hausdorff维数[J].数学年刊(A辑),1996,1(3):353-360. 被引量:1
-
3尹训昌,余春日,郝广周,祝祖送.Sierpinski镂垫上具有三体自旋作用的Ising模型[J].四川大学学报(自然科学版),2008,45(5):1151-1154. 被引量:1
-
4吴军.Sierpinski gasket上Brown运动的重点[J].数学杂志,1995,15(1):89-96.
-
5CAO Li,HE Xinggang.Dimensional Results for the Moran-Sierpinski Gasket[J].Wuhan University Journal of Natural Sciences,2012,17(2):93-96.
-
6尹慧.Sierpinski镂垫上Gauss模型的普适性[J].曲阜师范大学学报(自然科学版),2006,32(4):81-83.
-
7Limit of occupation time of super Brownian motionon Sierpinski gasket[J].Chinese Science Bulletin,1998,43(7):614-614.
-
8吴军.Sierpinski Gasket上Brownian运动水平集与紧集之交的Hausdorff维数[J].数学杂志,1995,15(2):203-209.
-
9李英,孔祥木,黄家寅.外场中Sierpinski镂垫上磁模型的临界性质[J].曲阜师范大学学报(自然科学版),2002,28(2):54-56. 被引量:1
-
10郭军义.Local extinction of super-Brownian motion on Sierpinski gasket[J].Science China Mathematics,1998,41(3):260-266.