期刊文献+

C^1四次Pythagorean Bézier样条曲线的构造 被引量:1

Construction of C^1 Quartic Pythagorean Bézier Spline Curve
下载PDF
导出
摘要 根据PH曲线的定义,构造了Bézier形式的四次PH曲线,亦称之四次Pythagorean Bézier速端曲线(PB曲线),研究了四次PB曲线特征性质,构造了它的一阶Hermite插值曲线,得到了C1四次Pythagorean Bézier样条曲线。 According to the definition of PH Curves,the quartic PH curves with Bézier form(known as PB curves,i.e.quartic Pythagorean Bézier hodograph curves) are constructed.Then the properties of quartic PB are investigated and the first order Hermite interpolating curves are constructed,from which the C1 quartic Pythagorean Bézier Spline curves are obtained.
作者 桂校生
机构地区 安庆市杨桥中学
出处 《安庆师范学院学报(自然科学版)》 2011年第1期27-30,共4页 Journal of Anqing Teachers College(Natural Science Edition)
关键词 PH曲线 PYTHAGOREAN Bézier速端曲线(PB曲线) C1四次Pythagorean Bézier样条曲线 Pythagorean hodograph curve Pythagorean Bézier hodograph curve C1 quartic PB spline curve
  • 相关文献

参考文献8

  • 1Farouki R T, Neff C A. Analytic properties of plane offset curves CAGD [ J]. Computer Aided Design, 1990,7 ( 1 - 2 ) : 83 - 99.
  • 2B. Pram. Offset curves and surfaces :a brief survey[ J ]. Computer Aided Design, 1992,24 (3) :223 -230.
  • 3韩西安.三次Pythagorean Bezier速端曲线的形状分析.指挥技术学院学报,:85-87.
  • 4韩西安,叶正麟,黄希利.Pythagorean Bézier速端曲线及其等距线[J].计算数学,2001,23(1):27-36. 被引量:1
  • 5K. K. Kubota. Pythagorean triplesin unique faetorization domains [ J ]. Amer. Monthly, 1972,79 (8) : 175 - 192.
  • 6郑志浩,汪国昭.用三次PH曲线构造平面Bézier曲线的等距线算法[J].计算机辅助设计与图形学学报,2004,16(3):324-330. 被引量:15
  • 7Moon H P,Farouki R T. Construction and shape analysis of PH quintic Hermite interpolants [J]. Computer Aided Geometric Design,2001,1(2) :93 -115.
  • 8陈苗,张艳秋.带参数λ的三次Bézier曲线的光顺延拓[J].安庆师范学院学报(自然科学版),2009,15(4):16-18. 被引量:1

二级参考文献18

  • 1周元峰,张彩明.G^2连续约束下三次Bézier曲线的延拓[J].计算机辅助设计与图形学学报,2005,17(3):425-430. 被引量:13
  • 2王维国,刘利刚,王国瑾.三次B啨zier曲线间的几何延拓算法[J].计算机辅助设计与图形学学报,2006,18(12):1911-1917. 被引量:10
  • 3韩西安.Pythagorean Bezier速端曲线及其在几何造型中的应用(学位论文)[M].西安:西北工业大学应用数学系,1997..
  • 4Shetty S, White PR. Curvature--continuous extensions for rational B--spline curves and surfaces[J]. Computer-Aided Design, 1991,23(7):484--491.
  • 5Shi--Min Hu, Chiew--Lan Tai, Song--Hal Zhang. An extension algorithm for B--splines by curve unclamping[J]. Computer--Aided Design, 2002,34(5) :415--419.
  • 6Klass R. An offset spline approximation for plane cubic spline[J]. Computer-Aided Design, 1983, 15(4): 297-299.
  • 7Tiller W, Hanson E G. Offsets of two dimensional profiles [J].IEEE Computer Graphics & Applications, 1984, 4(9) : 36-46.
  • 8Coquillart S. Computinging offsets of B-spline curves [J].Computer-Aided Design, 1988, 19(6) : 305-309.
  • 9Hoschek J, Wissel N. Optimal approximation conversion of spline curve and spline approximation of offset curves [J].Computer Aided Design, 1988, 20(8) : 475-483.
  • 10Hoschek J. Spline approximation of offset [J]. Computer Aided Geometric Design, 1988, 5:33-40.

共引文献14

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部