期刊文献+

应用有限元模拟研究退火温度对超低碳烘烤硬化钢力学性能的影响

APPLICATION OF FEM TO STUDY THE EFFECT OF ANNEALING TEMPERATURE ON MECHANICAL PROPERTIES OF ULTRA LOW CARBON BAKE-HARDENING STEELS
下载PDF
导出
摘要 对超低碳烘烤硬化钢在740℃到800℃之间进行退火,通过拉伸试验获得试样的力学性能。利用有限元软件ANSYS/LS-DYNA对试样的拉伸过程进行模拟并验证模拟过程的可行性,同时也解释了拉伸过程中出现的非正常断裂现象。对拉伸过程正常断裂试样的模拟及试验结果计算获得合适的模拟参数。模拟结果显示,拉伸过程中非正常断裂的退火试样应在中间位置断裂,其延伸率相比其他试样并没有很大的突变。认为有限元模拟可以对超低碳烘烤硬化钢的拉伸行为的预测起到一定指导作用。 The ultra low carbon bake-hardening steels were annealed within the temperature from 740 ℃ to 800 ℃.The tensile experiments were carried out to detect the mechanical properties of samples.FEM software of ANSYS/LS-DYNA was employed to simulate the tensile processes,so as to verify the validity of the software as well as explain the appearance of un-normal rupturing.During the simulation,the reliable parameters were obtained by simulation and calculated date of the normal ruptured samples.Simulation results showed that the sample ruptured in the central region of parallel zone,and that the engineering elongation of it was reasonable compared with that of the other samples.It was indicated that the finite element modeling was useful to investigate the mechanical properties of bake hardening steels.
出处 《上海金属》 CAS 2011年第2期32-35,共4页 Shanghai Metals
基金 VANITEC与国家自然基金项目(50971137)
关键词 ANSYS/LS-DYNA 有限元模拟 超低碳烘烤硬化钢 拉伸试验 力学性能 ANSYS/LS-DYNA Finite Element Modeling Ultra Low Carbon Bake Hardening Steel Tensile Experiments Mechanical Property
  • 相关文献

参考文献10

  • 1Taylor K A, Speer J G. Development of vanadium-alloyed, bakehardenable sheet steels for hot-dip coated applications [ C ]. 39TH MWSP CONF. PROC, ISS, Indianapolis, IN, USA. XXXV, 1997,49-61.
  • 2Ooi S W, Fourlaris G. A comparative study of precipitation effects in Ti only and Ti-V Ultra Low Carbon (ULC) strip steels [ J]. Materials Characterization, 2006,56:214-226.
  • 3Mitchell P, Gladman T. Vanadium in interstitial free steels[C]. 39TH MWSP CONF. PROC, ISS, USA, 1997, 37-48.
  • 4Cabezas E E, Celentano D J. Experimental and numerical analy- sis of the tensile test using sheet specimens [ J]. Finite Elements in Analysis and Design ,2004,40:555-575.
  • 5Zhao Y H, Guo Y Z, Wei Q, et al. Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves[J]. Materials Science and Engineering: A, 2009,525: 68 -77.
  • 6Zhao Y H, Guo Y Z, Wei Q,et al. Influence of specimen dimen- sions on the tensile behavior of uhrafine-grained Cu [ J ]. Scripta Materialia, 2008,59:627-630.
  • 7Dumoulin S, Tabourot L, Chappuis C, et al. Arrieux, Determi- nation of the equivalent stress-equivalent strain relationship of a copper sample under tensile loading [ J ]. Journal of Materials Processing Technology, 2003,133:79-83.
  • 8Arriaga A, Pagaldai R, Zaldua A M, et al. Impact testing and simulation of a polypropylene component. Correlation with strain rate sensitive constitutive models in ANSYS and LS-DYNA [ J ]. Polymer Testing, 2010,29 : 170-180.
  • 9Belhabib S, Haddadi H, Gasperini M, et al. Heterogeneous ten- sile test on elastoplastic metallic sheets: Comparison between FEM simulations and full-field strain measurements[ J]. Interna- tional Journal of Mechanical Sciences, 2008,50 : 14-21.
  • 10[Komori K. Simulation of tensile test by node separation method [ J ]. Journal of Materials Processing Technology, 2002, 125- 126:608-612.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部