期刊文献+

左旋聚乳酸纳米纤维膜的热处理研究 被引量:2

Heat-treatment of electrospun poly-L-lactic acid aligned nanofibrous membranes
下载PDF
导出
摘要 研究了热牵伸和热定型处理对静电纺丝左旋聚乳酸平行纳米纤维膜力学性能和微观结构的影响。拉伸试验表明,在100℃热空气条件下,沿纤维排列方向上牵伸300%、热定型10 min的纤维膜力学性能最佳,其抗拉强度和模量分别达到103 MPa和1.83 GPa。扫描及透射电子显微镜观察显示,经热牵伸后,纤维的直径随牵伸率的增加而减小,其致密及平行程度相应提高,纤维内部转变为垂直于纤维轴且平行排列的片晶结构。差示扫描量热分析结果表明,纤维膜的结晶度随牵伸率的增加而增大,随热定型时间先增加后减小。广角X射线衍射和小角X射线散射分析可知,纤维膜经热处理后的结晶为α型,其微晶尺寸及晶面间距均随牵伸率的增加而减小,随热定型时间先增加后减小,而纤维内部的针状微缺陷随着牵伸率的增加而变得更加狭长有序,使得纤维膜的力学性能得以提高。 The effects of hot drawing and annealing on the mechanical properties and microstructures of parallel electrospun poly-L-lactic acid nanofibrous membranes(PLLA-ANM) have been systematically investigated by tensile tests,SEM,TEM,DSC,WAXD and SAXS.The maximum values of tensile strength and modulus of PLLA-ANM,103MPa and 1.83GPa respectively,were obtained when the membrane was hot stretched along the fiber axis by 300% at 100℃ and further annealed for 10min.The average fiber diameters of the PLLA-ANM decreased with increasing drawing ratio(DR),but the fiber orientation was concomitantly improved.The structure of the as-spun membrane changed to the α-type,stacked-laminar crystalline structure after heat treatment.As the DR increased,the DSC crystallinity of the membranes increased,but the crystallite size along the(110/220) planes decreased.Both the DSC crystallinity and crystallite size of the heat-treated membrane initially increased and then decreased with increasing annealing time.In addition,the needle-like microvoids within the fibers became narrower and more ordered.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期69-75,共7页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 国家自然科学基金(50873012) 国家"863"计划(2007AA03Z328766) 国际科技合作计划(2007DFA30690)
关键词 静电纺丝 纳米纤维 聚乳酸 热牵伸 electrospinning nanofiber polylactic acid hot drawing
  • 相关文献

参考文献11

  • 1Rutledge C G, Fridrikh V S. Formation of fibers by electrospinning [ J ]. Advanced Drug Delivery Reviews, 2007, 59: 1384-1391.
  • 2Huang Z M, Zhang Y Z, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites [ J ]. Composites Science and Technology, 2003, 63: 2223-2253.
  • 3Li W J, Laurencin C T, Caterson E J, et al. Electrospun nanofibrous structure: A novel scaffold for tissue engineering[J]. J Biomed Mater Res, 2002, 60A: 613- 621.
  • 4Zong X H, Bien H, Chung C Y, et al. Electrospun finetextured scaffolds for heart tissue constructs [ J]. Biomaterials, 2005, 26: 5330-5338.
  • 5Yang F, Murugan R, Wang S, et al. Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering[ J]. Biomaterials, 2005, 26: 2603-2610.
  • 6Zong X H, Rang S F, Fang D F, et al. Control of structure, morphology and property in electrospun poly( glycol- ide-co-lactide) non-woven membranes via post-draw treatments[J]. Polymer, 2003, 44: 4959-4967.
  • 7Chen S L, Hu P, Greiner A, et al. Electrospun nanofiber belts made from high performance copolyimide[ J ]. Nanotechnology, 2008, 19 : 015604. 1-015604. 9.
  • 8Ji J Y, Sui G, Yu Y H, et al. Significant improvement of mechanical properties observed in highly aligned carbonnanotube-reinforced nanofibers [ J ]. J Phys Chem C, 2009, 113: 4779-4785.
  • 9Bashur A C, Shaffer D R, Dahlgren A L, et al. Effect of fiber diameter and alignment of electrospun polyurethane meshes on mesenchymal progenitor cells[ J]. Tissue Engineering A, 2009, 15 : 2435-2445.
  • 10Thunemann F A. Microvoids in polyacrylonitrile fibers: A small-angle X-ray scattering study [ J ]. Macromolecules, 2000, 33: 1848-1852.

同被引文献34

  • 1陈平,陆春,于祺,孙明.连续纤维增强PPESK树脂基复合材料的界面性能[J].材料研究学报,2005,19(2):159-164. 被引量:12
  • 2张欣涛,廖功雄,冯学斌,靳奇峰,蹇锡高.新型PPESK/聚四氟乙烯共混物的力学和摩擦磨损性能研究[J].摩擦学学报,2007,27(4):330-335. 被引量:5
  • 3Chen G,Ushida T,Tateishi T. Hybrid biomaterials for tissue engineering:A preparative method for PLA or PLGA/col agen hybrid sponges[J].{H}Advanced Materials,2000,(06):455-457.
  • 4Venkatesan J,Qian ZJ,Ryu BM. Preparation and characterization of carbon nanotube-grafted-chitosan-Natural hydroxyapatite composite for bone tissue engineering[J].{H}Carbohydrate Polymers,2011,(02):569-577.
  • 5Nayak TR,Li J,Phua LC. Thin films of functionalized multiwal ed carbon nanotubes as suitable scaffold materials for stem cel s proliferation and bone formation[J].ACS Nano,2010.7717-7725.
  • 6Tran PA,Zhang LJ,Webster TJ. Carbon nanofibers and carbon nanotubes in regenerative medicine[J].Advan Drug Deliv Rev,2009,(12):1097-1114.
  • 7Meng J,Song L,Meng J. Using single-wal ed carbon nanotubes nonwoven films as scaffolds to enhance long-term cel proliferation in vitro[J].{H}Journal of Biomedical Materials Research,2006,(02):298-306.
  • 8Jia XE,Zhou YP,Tan L. Hydroxyapitite-multiwal ed carbon nanotubes nanocomposite for adhesion and electrochemical study of human osteoblast-like cel s (MG-63)[J].Electroch Acta,2009.3611-3617.
  • 9Elias KL,Price RL,Webster TJ. Enhanced functions of osteoblasts on nanometer diameter carbon fibers[J].{H}BIOMATERIALS,2002,(15):3279-3287.
  • 10Pricea RL,Waid MC,Haberstroh KM. Selective bone cel adhesion on formulations containing carbon nanofibers[J].{H}BIOMATERIALS,2003,(11):1877-1887.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部