摘要
设F是特征为零的域,gl(n,F)为域F上的一般线性李代数,Tn为域F上全体n×n阶上三角矩阵李代数,称gl(n,F)中包含Tn的所有子代数为gl(n,F)的抛物子代数.决定出gl(n,F)上的任意标准抛物子代数P的形式,证明了任意抛物子代数P上的映射φ是保李积的非线性可逆映射当且仅当存在可逆矩阵T∈P,映射χ:P→F和域F的自同构f,使得φ([aij])=T[f(aij)]T-1+χ([aij])I或φ([aij])=-R(T[f(aij)]T-1)tR-1+χ([aij])I,对任意的[aij]∈P,其中R=∑ni=1(-1)iE1,n+1-i,χ满足对任意的A∈P={[x,y]x,y∈P},总有χ(A)=0.
Let F be an arbitrary field with characteristics zero,gl(n,F) the general linear Lie algebra of all n×n matrices,and let Tn be the Lie algebra of all upper n×n matrices.A subalgebra P of gl(n,F) containing Tn is called a parabolic subalgebra of gl(n,F).Decide the form of arbitrary parabolic subalgebra P of gl(n,F)and prove that a non-linear bijective map φon P preserves Lie products if and only if there exist an invertible matrix T∈P,a function χ:P→F satisying χ(A)=0 for every matrix A∈P={|x,y∈P},and an automorphism f of the field F,such that φ()=T[f(aij)]T-1+χ()I, or φ()=-R(T[f(aij)]T-1)tR-1+χ()I,for all ∈P,where R=∑ni=1(-1)iE1,n+1-i.
出处
《福建师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第2期1-5,共5页
Journal of Fujian Normal University:Natural Science Edition
基金
福建省自然科学基金资助项目(2009J05005)
关键词
抛物子代数
非线性可逆映射
李代数
自同构
域
保李积
parabolic algebra
non-linear bijective map
Lie algebra
automorphism
field
preserving Lie product