期刊文献+

一般线性李代数的抛物子代数上保李积的非线性可逆映射

Non-linear Invertible Maps on Parabolic Subalgebras of the General Linear Lie Algebras Preserving Lie Products
下载PDF
导出
摘要 设F是特征为零的域,gl(n,F)为域F上的一般线性李代数,Tn为域F上全体n×n阶上三角矩阵李代数,称gl(n,F)中包含Tn的所有子代数为gl(n,F)的抛物子代数.决定出gl(n,F)上的任意标准抛物子代数P的形式,证明了任意抛物子代数P上的映射φ是保李积的非线性可逆映射当且仅当存在可逆矩阵T∈P,映射χ:P→F和域F的自同构f,使得φ([aij])=T[f(aij)]T-1+χ([aij])I或φ([aij])=-R(T[f(aij)]T-1)tR-1+χ([aij])I,对任意的[aij]∈P,其中R=∑ni=1(-1)iE1,n+1-i,χ满足对任意的A∈P={[x,y]x,y∈P},总有χ(A)=0. Let F be an arbitrary field with characteristics zero,gl(n,F) the general linear Lie algebra of all n×n matrices,and let Tn be the Lie algebra of all upper n×n matrices.A subalgebra P of gl(n,F) containing Tn is called a parabolic subalgebra of gl(n,F).Decide the form of arbitrary parabolic subalgebra P of gl(n,F)and prove that a non-linear bijective map φon P preserves Lie products if and only if there exist an invertible matrix T∈P,a function χ:P→F satisying χ(A)=0 for every matrix A∈P={|x,y∈P},and an automorphism f of the field F,such that φ()=T[f(aij)]T-1+χ()I, or φ()=-R(T[f(aij)]T-1)tR-1+χ()I,for all ∈P,where R=∑ni=1(-1)iE1,n+1-i.
作者 陈琼 陈正新
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期1-5,共5页 Journal of Fujian Normal University:Natural Science Edition
基金 福建省自然科学基金资助项目(2009J05005)
关键词 抛物子代数 非线性可逆映射 李代数 自同构 保李积 parabolic algebra non-linear bijective map Lie algebra automorphism field preserving Lie product
  • 相关文献

参考文献8

  • 1Li C K, Tsing N K. Linear preserver problem: a brief introduction and some special techniques [J]. Linear Algebra Appl, 1992 (162/164): 217-235.
  • 2Pierce S. A survey of linear preserver problems[J]. Lin Mul Alg, 1992, 33.- 1-192.
  • 3Pierce S, Li C K. Linear preserver problem [J]. Amer Math Monthly, 2001, 108: 591-605.
  • 4Marcus M. Linear operations of matrices [J]. Amer Math Monthly, 1962, 69: 837-847.
  • 5Dolinar G. Maps on upper triangular matrices preserving Lie products [J]. Lin Mul Alg, 2007. 55: 191-198.
  • 6Dolinar G. Maps on upper M, preserving Lie products [J]. Publ Math Debrecen, 2007. 71: 467-477.
  • 7Wang D Y, Yu Q. Derivation of the parabolic subalgebras of the general linear Lie algebra over a commutative ring [J]. Linear Algebra Appl, 2006 (418): 763-774.
  • 8Humphreys J E. Introduction to Lie algebras and representation theory [M]. New York: Springer-Verlag, 1972.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部