期刊文献+

子环扩张的morphic性质(英文) 被引量:2

The Morphic Properties of Subring-Extension
下载PDF
导出
摘要 设R是一个环,C是R的子环,C包含环R的单位元.令C R={(c,r)|c∈C,r∈R},按方式(c1,r1)+(c2,r2)=(c1+c2,r1+r2)和(c1,r1).(c2,r2)=(c1c2,c1r2+r1c2+r1r2)定义加法和乘法,易证C R是环,且单位元为(1R,0),故称这样的环为R的子环扩张.特别的,当子环C就取环R本身时,称R×R为R的平凡子环扩张.文章给出一些相关性质和例子,并证明了:1)若S=C×R是morphic环,则C和R也都是morphic环;2)若R是半单环,则R的平凡子环扩张是强morphic环. Let R be a ring, C be a subring of R, and IR∈C.Set CxR={(c,r)|c∈C,r∈R},with the addition and multiplication defined (c1+r1)+(c2+c2,r1+r2) and (c1,r1)·(c2·r2)=(c1c2,c1r2+r1r2+r1c2+r1r2) the CxR is a ring. The identity of CxR is (1R,0). Such ring is called the subring extension of R. In particular, when the subring C is R, RxR is called trivial subring extension of R. The paper provided some relevant properties and examples to investigate the morphic properties of the subring-extension of R. It is shown that if S=CxR is a left morphic ring, so are C and R and if R is a semisimple ring, then RxR is a strongly morphic ring.
作者 张丽婷
出处 《杭州师范大学学报(自然科学版)》 CAS 2011年第2期109-113,共5页 Journal of Hangzhou Normal University(Natural Science Edition)
基金 Supported by National Natural Science Foundation of Zhejiang Province(Y6090404) Supported by the Graduate Innovation Seed Project of Hangzhou Normal University
关键词 子环扩张 (左)morphic环 强morphic subring-extension (left) morphic ring strongly morphic
  • 相关文献

参考文献8

  • 1Nicholson W K, Sdnchez Camp6s E. Rings with the dual of the isomorphism theorem[J]. J Algebra,2004,271(1):391-406. Journal of Pure and Applied Algebra,2007,210(2) :501-510.
  • 2Chen Jianlong, Zhou Yiqiang. Morphie rings as trivial extensions[J]. Glasg Math J,2005,47(1) : 139-148.
  • 3Chen Jianlong, Li Yuanlin, Zhou Yiqiang. Constructing morphic rings[C]//Advance in Ring Theory, Najing: Haekensack,2005:26 32.
  • 4Lee T K, Zhou Yiqiang. Morphie rings and unit regular rings[J]. Journal of Pure and Applied Algebra, 2007,210( 2):501 510.
  • 5Huang Qinghe, Chen Jianlong. n-morphic rings[J]. Kyungpook Math J,2007,47:363-372.
  • 6许秀玲,储茂权.关于Morphic环的推广(英文)[J].安徽师范大学学报(自然科学版),2008,31(6):522-524. 被引量:1
  • 7Lee T K, Zhou Yiqiang. Morphie rings and unit regular rings[J]. Journal of Pure and Applied Algebra,2007,210(2) :501-510.
  • 8葛平红,储茂权.单位正则环和SF-环(英文)[J].安徽师范大学学报(自然科学版),2009,32(4):322-324. 被引量:2

二级参考文献18

  • 1周海燕,王小冬.von-Neumann正则环与左SF-环[J].Journal of Mathematical Research and Exposition,2004,24(4):679-683. 被引量:13
  • 2章聚乐,杜先能.Von Neumann正则环和SF-环[J].数学年刊(A辑),1993,1(1):6-10. 被引量:17
  • 3章聚乐.关于SF-环的几点注记[J].数学杂志,1994,14(2):197-202. 被引量:8
  • 4NICHOLOSON W K, Sanchez campos E. Rings with the dual of the isomorphism theorem[J]. J Algebra,2004,271:391-406.
  • 5CHEN Jian-long. On regular rings and GP-injective rings[J].J Math Reseach and Exposition, 1991,11 (2) : 272 - 274.
  • 6KASCH F. Modules and rings [M]. Academic New York:Press, 1982.
  • 7CHEN Jiang-long, NANQING Ding. On general principally injective rings[J]. Comm Algebra, 1999,27(5) ;2097 - 2116.
  • 8ZHANG Ju-le, WU Jun. Generalizations of p-injective [J]. J Algebra Colloquium, 1999,6(3) :277 - 282.
  • 9YUE Chi-ming R. On p-injective and generalization [J]. J Riv Mat Univ Parma, 1996,5(5) :277 - 282.
  • 10ZHAO Yu-e, DU Xian-neng. Some relations on generalizations of injective rings [J ]. J Math Res Exp,2004,24 (3) :411 -417.

共引文献1

同被引文献10

引证文献2

  • 1张丽婷.ML-环[J].信阳师范学院学报(自然科学版),2012,25(1):5-8.
  • 2姜翠翠,储茂权.子环扩张的G-Morphic性[J].安徽师范大学学报(自然科学版),2014,37(1):30-32.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部