期刊文献+

基于FP-tree最大频繁模式超集挖掘算法 被引量:3

Maximal Frequent Pattern Superset Mining Algorithm Based on FP-tree
下载PDF
导出
摘要 数据挖掘应用中的最大频繁项集挖掘算法大多存在候选项目集冗余问题,造成时间和空间的浪费.针对此问题,通过构造条件FP-tree,对不符合要求的项目进行剪除并对MFIT算法进行改进,提出一种基于FP-tree的最大频繁模式超集挖掘算法.此算法无需产生大量的候选集,同时减少数据集扫描次数,降低数据库遍历时间,提高算法效率.实验证明,此算法在降低候选项目集冗余度的同时有效减少了算法运行时间. The main problem existing in maximal frequent itemsets mining algorithms of data mining applications was candidate set redundancy,waste of time and space.The constructed conditioning FP-tree would cut off the items which did not meet the requirements and improve MFIT algorithm.The conditioning FP-tree was proposed as the largest frequent pattern superset mining algorithm based on FP-tree.This algorithm did not produce numerous candidate sets,at the mean time,reduced the frequency of scan data set and the database traversal,improving efficiency of the algorithm.Experiments results showed that the algorithm reduced redundant candidate itemsets and effectively decreased the algorithm running time.
作者 王君 任永功
出处 《郑州大学学报(理学版)》 CAS 北大核心 2011年第1期33-36,41,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 辽宁省科技计划项目 编号2008216014 辽宁省教育厅高等学校科研基金资助项目 编号L2010229 大连市优秀青年科技人才基金资助项目 编号2008J23JH026
关键词 数据挖掘 最大频繁项目集 条件频繁模式树 超集检测 data mining maximal frequent itemsets conditional FP-tree superset checking
  • 相关文献

参考文献6

  • 1Grahne G, Zhu J F. High performance mining of maximal frequent itemsets[C]//Proc of the SIAMInt'I Workshop on High Performance Data Mining (HPDM). San Francisco: C A, 2003: 135-143.
  • 2马丽生,邓辉文,齐逸.一种新的最大频繁项目集挖掘算法[J].计算机应用,2006,26(11):2670-2673. 被引量:6
  • 3Peiyi T, TurKia P. Mining frequent itemsets with partial enumeration[C]//Proeeedings of the 44th Annual Southeast Regional Conference. Florida, 2006,180-185.
  • 4Zhang S, Zhang J, Zhang C. EDUA.. An efficient algorithm for dynamic database mining[J]. Information Sciences, 2007,177(13): 2756 -2767.
  • 5张志立,张鹏,齐德昱.一种基于遗传算法的知识规则挖掘算法[J].郑州大学学报(理学版),2004,36(3):18-21. 被引量:8
  • 6Zhang Xueping, Zhu Yanxia, Hua Nan. Mining maximal patterns based on improved FP-tree and array technique[C]// Proceedings of the 2010 2nd International Conference on Future Computer and Communication. Jinggangshan, 2010: 660-664.

二级参考文献14

  • 1刘君强,孙晓莹,王勋,潘云鹤.挖掘最大频繁模式的新方法[J].计算机学报,2004,27(10):1328-1334. 被引量:15
  • 2颜跃进,李舟军,陈火旺.基于FP-Tree有效挖掘最大频繁项集[J].软件学报,2005,16(2):215-222. 被引量:68
  • 3HANJ KAMBERM 范明 孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 4AGRAWAL R , IMIEIJNSKI T , SWAMI A . Mining association rules between sets of items in large database[ A]. Proceedings of 1993 ACM-SIGMOD Conf on Management of (SIGMOD'93) [ C].New York: ACM Press, 1993. 207-216.
  • 5AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules[ A]. Proceedings of 1994 International Conference on Very Large DataBases (VLDB'94) [ C]. San Francisco: Morgan Kaufman,1994. 478-499.
  • 6HAN J, PEI J, YIN Y. Mining frequent patterns without candidate generation[ A]. The 2000 ACM-SIGMOD[ C]. Dallas, TX, 2000.
  • 7LIN D-I., KEDEM ZM. Pincer-search: A new algorithm for discovering the maximun frequent set[ A]. Proceedings of the 6th International Conference on Extending Database Technology[ C]. Valencia,Spain, 1998, 105 - 119.
  • 8BAYARDO RJ. Efficiently mining long patterns from database[ A].Proc of the 1998 ACM SIGMOD International Conference on Management of Data[C]. Seattle, Washington, USA, 1998, 85-93.
  • 9AGGARWAL C, AGRAWAL R, PRASAD VVV. Depth first generation of long patterns[ A]. Proceedings of the 6th ACM SIGKDD International Conference on knowledge Discovery & Data Mining[ C].Boston, MA, USA, 2000,108-118.
  • 10BURDICK D, CALIMLIM M, GEHRKE J. MAFIA: A maximal fiequent itemset algorithm for transactional databases[ A]. Proceedings of the 17th International Conference on Data Engineering[ C]. Heidelberg, Germany, 2001. 443 - 452.

共引文献12

同被引文献24

  • 1Zhang Zhao-hui, Lu Yu-chang. An effective partitioning-combining algorithm for discovering quantitative association rules [ C ]. Proceedings of PAKDD, Singapore: World Scientific Publishing Co, 2008:241 - 251.
  • 2Cheung D. Efficient mining of association rules in distributed databases[J]. IEEE Transactions on Knowledge and Data Engineering, 2006,8(6) :911 -922.
  • 3Lin D, Kedem Z M. Pincer-search A new algorithm for discovering the maximum frequent set[C]. Proceedings of the 6th International Conference on Extending Database Technology, 2008:105 -119.
  • 4Hao Peng , Craig S L. Recent developments in PET instrumentation [ J ]. Current Pharmaceutical Biotechnology, 2010, 11 (6) : 555 - 571.
  • 5Reader A J, Zaidi H. The promise of new PET image reconstruction[ J]. Physica Medica, 2008, 24:49 -56.
  • 6Barrett H H, White T, Parra L C. List-mode likelihood[ J]. J Opt Soc Am A, 1997, 14(11) :2914 -2923.
  • 7Parra L , Barrett H H. List-mode likelihood: EM algorithm and image quality estimation demonstrated on 2-D PET[ J]. IEEE Trans Med Imaging, 1998, 17(2) :228 -235.
  • 8Rahmin A, Lenox M, Reader A J, et al. Statistical list-mode image reconstruction for the high resolution research tomograph [ J]. Phys Med Biol, 2004, 49:4239 -4258.
  • 9Aguiar P, Rafecas M, Ortufio J E, et al. Geometrical and Monte Carlo projectors in 3D PET reconstruction[J]. Med Phys, 2010, 37 (11) :5691 - 5702.
  • 10Colas S. A fast tube of response ray-tracer[J]. Med Phys, 2006, 33(12) :4744 -4748.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部