期刊文献+

具5次强非线性项的广义对称正则长波方程的显式精确解 被引量:1

Precise and Explicit Solutions to a Generalized Symmetric Regularized Long Wave Equations with Five Order Stronger Nonlinear Term
下载PDF
导出
摘要 考虑了一类具5 次强非线性项的广义对称正则长波方程的精确可解性问题。首先将求此方程孤立波解的问题归结为求解具5 次强非线性项的Lienard 方程u″(ξ) + lu( ξ) + m u3(ξ) + nu5(ξ) =0 ,接着通过变换u(ξ) = φ(ξ) 得到φ( ξ) 满足的方程2 φ(ξ) φ″( ξ) - φ′2(ξ) + 4lφ2( ξ) + 4 mφ3(ξ) +4 nφ4(ξ) = 0 ,最后通过两种假设φ(ξ) = Aeα(ξ+ ξ0)/[(1 + eα(ξ+ ξ0))2 + Beα(ξ+ ξ0)] 和φ(ξ) = Aeα( ξ+ ξ0)/(1 +eα(ξ+ ξ0)) 获得了5 次Lienard 方程的二类显式精确解。据此求出了具5 次非线性项的广义对称正则长波方程的钟状和扭状孤立波解。 Precise soluability to a class of generalized symmetric regularized long wave equations with five order stronger nonlinear term are considered. Firstly, the problem of seek to solitary wave solutions of the equation are reduced to a problem to solve lienard equation with five order stronger nonlinear term u″(ξ)+lu(ξ)+mu 3(ξ)+nu 5(ξ) =0. Then, a equation 2 φ(ξ)φ″(ξ)-φ′ 2(ξ)+4lφ 2(ξ)+4mφ 3(ξ)+4nφ 4(ξ) =0 is obtained by a transformation u(ξ)=φ(ξ) . Finally, precise and explicit solutions of two types for five order lienard equation are obtained by two different assumptions φ(ξ)=A e α(ξ+ξ 0) /[(1+ e α(ξ+ξ 0) ) 2+B e α(ξ+ξ 0) ] and φ(ξ)=A e α(ξ+ξ 0) /(1+ e α(ξ+ξ 0) ). According to this result, bell-shaped and kink-shaped solitary wave solutions for generalized symmetric regularized long wave equation are obtained, furthermore, singular travelling wave solutions of two types and periodic wave solutions of triangle function type are also given.
作者 尚亚东
出处 《石油化工高等学校学报》 CAS 1999年第4期84-88,共5页 Journal of Petrochemical Universities
基金 西安石油学院科研基金
关键词 强非线性 孤立波解 SRLWE 数学物理 Symmetric regularized long wave equation Stronger nonlinear Ansatze method Solitry wave solution Periodic wave solution
  • 相关文献

参考文献3

二级参考文献6

  • 1汪懋骅,应用数学和力学,1988年,9卷,7期,657页
  • 2Chen H H,Phys Scr,1979年,20卷,490页
  • 3尚亚东,陕西师范大学学报,1998年,26卷,4期,7页
  • 4Ma Wenxiu,Int J Nonlinear Mechanics,1996年,31卷,3期,329页
  • 5Guo Boling,J Comput Math,1987年,5卷,4期,296页
  • 6尚亚东,钮鹏程.几个非线性发展方程的精确孤立波解[J].纯粹数学与应用数学,1998,14(1):74-79. 被引量:5

共引文献53

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部