期刊文献+

g-框架算子的逆的逼近

Approximation of the inverse of g - frame operator
原文传递
导出
摘要 在Hilbert空间中,用有限维的方法讨论了g-框架算子的逆逼近问题,并得到这种逼近的充要条件. We discuss the problem of approximation of the inverse of g - frame operator by using finitedimensional methods in a Hilbert space and obtain a necessary and sufficient condition for the approximarion.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第1期5-9,共5页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省自然科学基金资助项目(2009J01007) 福建省教育厅科研资助项目(JA08013)
关键词 G-框架 算子 g—Riesz框架 逼近 g - frame operator g - Riesz frame approximation
  • 相关文献

参考文献10

  • 1Duffin R J, Sehaeffer A C. A class of nonharmonie Fourier serles[J]. J Trans Amer Math Soc, 1952, 72:341-366.
  • 2Daubeehies I, Grossmarm A, Meyer Y. Painless nonorthogonal expansions [J]. J Math Phys, 1986, 27 : 271-1283.
  • 3Sun W. Gframes and gRiesz bases[J]. J Math Anal Appl, 2006, 322(1) : 437-452.
  • 4Sun W. Stability of gframes [J]. J Math Anal Appl, 2007, 326 (2) : 858-868.
  • 5Zhu Y C. Characterizations of gframes and gRiesz bases in Hilbert spaces [J]].J Acta Mathematica Sinica: English Series, 2008, 24(10) : 1727-1736.
  • 6李登锋,薛明志.Banach空间上的基和框架[M].北京:科学出版社,2007.
  • 7Christensen O. Finitedimensional approximation of the inverse frame operator[J]. J Fourier Anal Appl, 2000, 6(1) : 79-91.
  • 8Casazza P G, Christensen O. Approximation of the frame coefficients using finitedimensional methods [J]. Journal of Electronic Imaging, 1997, 6(4) : 479-483.
  • 9王燕津,朱玉灿.Hilbert空间中g-Riesz框架[J].福州大学学报(自然科学版),2007,35(6):802-807. 被引量:8
  • 10程其襄.实变函数与泛函分析基础[M].北京:高等教育出版社,2001..

二级参考文献12

  • 1Duffin R J, Schaeffer A C. A class of nonharmonic Fourier series[J]. Trans Amer Math Soc, 1952, 72 : 341 -366.
  • 2Casazza P G. The art of flame theory[J]. Taiwan Residents J of Math, 2000, 4(2) : 129 -201.
  • 3Christensen O. Frames Riesz bases and discrete Gabor/wavelet expansions[J]. Bull Amer Math Soc, 2001,38(3) : 273 -291.
  • 4Christensen O. An introduction to frames and Riesz bases[ M]. Boston: Birkhauser, 2003.
  • 5Walnut D F. An introduction to wavelet analysis [ M ]. Boston: Birkhauser, 2002.
  • 6Mallat S. A wavelet tour of signal processing[M]. San Diego: Academic Press, 1999.
  • 7Christensen O. Operators with closed range, pseudo - inverses, and perturbation of frames for a subspaee [ J ]. Canad Math Bull, 1999, 42(1): 37-45.
  • 8Sun W. G- frame and g-Riesz base[J]. J Math Anal Appl, 2006, 322( 1 ) : 437 -452.
  • 9Sun W. Stability of g-frames[J]. J Math Anal Appl, 2007, 326(2) : 858 -868.
  • 10Zhu Y C. Characterizations of g-frames and g-Riesz bases in Hilbert spaces[J]. Acta Mathematica Sinica: English Series, 2008, 24(3) : 501 -512.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部