期刊文献+

一种状态自动划分的模糊小脑模型关节控制器值函数拟合方法 被引量:3

Fuzzy cerebellar model arithmetic controller with automatic state partition for value function approximation
下载PDF
导出
摘要 在庞大离散状态空间或连续状态空间中,强化学习(RL)需要进行值函数拟合以寻找最优策略.但函数拟合器的结构往往由设计者预先设定,在学习过程中不能动态调整缺乏自适应性.为了自动构建函数拟合器的结构,提出一种可以进行状态自动划分的模糊小脑模型关节控制(FCMAC)值函数拟合方法.该方法利用Bellman误差的变化趋势实现状态自动划分,并且探讨了两种选择划分区域的机制.汽车爬坡问题和机器人足球仿真平台中的实验结果表明新算法能有效拟合值函数,而且利用所提出的函数拟合器智能体可以进行有效的强化学习. In continuous-state space or large discrete-state space,the reinforcement learning(RL) uses function ap-proximation approaches to represent the value function in seeking the optimal policy.However the structures of function approximators which will greatly influence the learning performance are often designed in advance.To generate the struc-ture of function approximator automatically,a novel function approximator called the automatic state-partition-based fuzzy cerebellar model arithmetic controller(ASP-FCMAC) is proposed.In ASP-FCMAC,the variation tendency of Bellman error is used to determine the best time to perform state partition and two mechanisms are also discussed for determining which state should be partitioned at each time step.Experimental results in solving mountain car problem and RoboCup Keepaway problem demonstrate that ASP-FCMAC can automatically generate the structure of FCMAC for effective rein-forcement learning.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第2期256-260,共5页 Control Theory & Applications
基金 国家自然科学基金资助项目(61005061) 广东省科技计划资助项目(2009A040300008) 广东省科技计划资助项目(2010B010600016) 广州市科技计划资助项目(2009KP008)
关键词 强化学习 值函数 状态自动划分 模糊小脑关节模型控制器 reinforcement learning value function automatic state partition fuzzy CMAC
  • 相关文献

参考文献8

  • 1RICHARD S S, ANDREW G B. Reinforcement Learning: An Introduction[M]. Cambridge, MA: Massachusettes Institute of Technology, 1998.
  • 2KELLER P W, MANNOR S, PRECUP D. Automatic basis function construction for approximate dynamic programming and reinforcement learning[C]//Proceedings of the 23rd International Conference on Machine Learning. Pittsburgh: Association for Computing Machinery, 2006:449 - 456.
  • 3WHITESON S, TAYLOR E M, STONE P, et al. Adaptive tile coding for value function approximation[R]. Austin: University of Texas. 2007.
  • 4SHERSTOV A A, STONE P. Function approximation via tile coding: automating parameter choice[C]//Proceedings of Symposium on Abstraction, Reformulation, and Approximation (SARA-05). Berlin, Germany: Springer-Verlag, 2005:194 - 205.
  • 5LANZI P L, LOIACONO D, WILSON S W, et al. Classifier prediction based on tile coding[C]//Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. Washington: Assciation for Computing Machinery, 2006:1497 - 1504.
  • 6MAHADEVAN S. Samuel meets Amarel: automating value function approximation using global state space analysis[C] I/Proceedings of American Association for Artificial Intelligence. Pittsburgh: American Association for Artificial Intelligence, 2005:1000 - 1005.
  • 7孙炜,王耀南.模糊CMAC及其在机器人轨迹跟踪控制中的应用[J].控制理论与应用,2006,23(1):38-42. 被引量:20
  • 8NIE J, LINKENS D A. FCMAC: a fuzzified cerebellar model articulation controller with self-organizing capacity[J]. Automatica, 1994, 30(4): 655 - 664.

二级参考文献5

  • 1ALBUS J S.A new approach to manipulator control:the cerebellar model articulation controller (CMAC) [J].J of Dynamic Systems,Measurement,and Control Trans of ASME,1975,5(2):220-227.
  • 2MILLER T W,GLANZ F H.An associative neural network alternative to backpropagation [J].Proceedings of IEEE,1990,78(10):1561-1567.
  • 3MILLER T W.Real-time application of neural networks for sensor-based control of robots [J].IEEE Trans on Systems Man and Cybernetics,1989,19(4):825-831.
  • 4WONG Y,SIDERIS A.Learning convergence in the cerebellar model articulation controller [J].IEEE Trans on Neural Networks,1992,3(1):115-121.
  • 5CHANG C T,LIN C S.CMAC with general basis functions [J].Neural Networks,1996,9(7):1199-1211.

共引文献19

同被引文献27

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部