期刊文献+

二阶线性非散度型抛物方程解的局部正则性估计 被引量:1

Local Regularity for the Linear Second-Order Parabolic Equation in Nondivergence Form
下载PDF
导出
摘要 发展了Acerbi等的方法,得到了一类具有小BMO系数的二阶线性非散度型抛物方程解的二阶偏导数在Orlicz空间中的局部正则性估计。这种正则性估计可以应用于W2p,1解的存在性问题。 By developing the method of Acerbi et al, the authors obtain local regularity in Orlicz spaces for the linear second-order parabolic equations with small BMO coefficients in nondivergence form. Such regularity estimates can be applied to the study of the existence of solutions in Wp^2,1.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第2期208-212,共5页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 数学天元青年基金(10926084) 教育部博士点新教师基金(20093108120003)资助
关键词 二阶 非散度型 抛物方程 正则性估计 小BMO ORLICZ空间 second-order nondivergence parabolic regularity small BMO Orlicz spaces
  • 相关文献

参考文献12

  • 1Bramanti M Cerutti M C. W^1.2 solvability for the p Cauchy-Dirichlet problem for parabolic equations with VMO coefficients. Comm Part Diff Equ, 1993, 18(9/10) : 1735-1763.
  • 2Byun S. Parabolic equations with BMO coefficients in Lipschitz domains. J Diff Equ, 2005, 209 (2): 229- 265.
  • 3Byun S, Wang Lihe. Lp estimates for parabolic equations in Reifenberg domains. J Funct Anal, 2005, 223 ( 1 ) : 44 -85.
  • 4Ladyzenskaja 0 A, Solonnikov V A, Uraheeva N N. Linear and quasilinear equations of parabolic type: Translations of Mathematical Monographs ( Vol. 23 ) , Rhode Island: American Mathematical Society, 1967.
  • 5Maugeri A, Palagachev D K, Softova L G. Elliptic and parabolic equations with discontinuous coefficients. Berlin: Mathematical Research, Wiley-VCH, 2000.
  • 6Krylov N V. Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms. J Funct Anal, 2007, 250(2): 521-558.
  • 7王月山,何月香.一类非散度型抛物方程解的局部W_p^(1,2)正则性[J].数学年刊(A辑),2007,28(4):569-580. 被引量:1
  • 8Adams R A, Fournier J J F. Sobolev spaces. 2nd ed. New York: Academic Press, 2003.
  • 9Byun S, Yao Fengping, Zhou Shulin. Gradient estimates in Orlicz space for nonlinear elliptic equations. J Funct Anal, 2008, 255(8) : 1851-1873.
  • 10Wang Lihe, Yao Fengping, Zhou Shulin, et al. Optimal regularity for the poisson equation. Proe Amer Math Soc, 2009, 137(6) : 2037-2047.

二级参考文献2

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部