摘要
针对N.Brillouёt-Belluot的公开问题所涉及的迭代差分方程,在局部有界连续解工作的基础上,研究一类形式更一般的迭代差分方程φ2(x)=λφ(kx+a)+f(x),其中φ为未知函数.利用不动点方法给出了该方程在R上存在无界连续解的条件.
To the iterative-differenee equation which relates to N. Brillouet-Belluot' s open problem, the local bounded continuous solutions of it had been discussed before. On the basis of this, in this paper we discuss a more general class of iterative-difference equations: φ^2 (x) = λφ(kx + a) +f(x), where φ is the unknown function. By applying a Faxed point theorem, the existence of their unbounded continuous solutions on R is proved.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第2期158-161,共4页
Journal of Sichuan Normal University(Natural Science)
基金
浙江省优秀青年教师基金(200911)资助项目
四川大学青年基金(2008123)
关键词
迭代差分
不动点
存在唯一
连续解
iterative-difference
fixed point
existence and uniqueness
continuous solution