期刊文献+

广义BBM方程的紧与非紧结构 被引量:1

Compact and Noncompact Structures for a Generalized BBM Equation
下载PDF
导出
摘要 使用微分方程降阶法去研究一类广义BBM方程,得到了方程包括紧孤子、孤立子、孤立波、周期解、代数行波解在内的精确解,同时指出了导致解物理结构变化的主要参数. An analytic mathematical approach based on the reduction of order for solving differential equations is developed to investigate a generalized BBM equation. Exact solutions of the equation, including compactons, solitons, solitary patterns, periodic solutions and algebraic traveling wave solutions are obtained under several circumstances. The conditions that cause the qualitative change in the physical structures of the solutions are highlighted.
作者 尹正 秦亚
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期170-173,共4页 Journal of Sichuan Normal University(Natural Science)
基金 教育部重点科研基金(109140)资助项目 西南财经大学科研基金(YB0818)
关键词 非线性方程 紧孤子 孤立子 周期解 nonlinear equations compactons solitons periodic solutins
  • 相关文献

参考文献4

二级参考文献28

  • 1舒级,张健.吸引玻色爱因斯坦凝聚的坍塌性质[J].四川师范大学学报(自然科学版),2004,27(4):331-334. 被引量:8
  • 2[1]Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations[M]. Singapore:World Scientific,1989.
  • 3[2]Devi J V. A variation of the Lyapunov second method to impulsive differential equation[J]. J Math Anal Appl,1993,177:190~200.
  • 4[3]Lakshmikantham V, Leela S, Martynyuk A A. Stability Analysis of Nonlinear Systems[M]. New York:Dekker,1989.
  • 5[4]Lakshmikantham V, Leela S. Differential and Integral Inequalities[M]. New York:Academic Press,1969.
  • 6[5]Ladde G S, Lakshmikantham V, Leela S. A new technique in perturbation theory[J]. J Math,1977,6:134~140.
  • 7Hon Y C,Zhang J,Zhou X.Threshold of global existence for 3-D attractive nonlinear Schroedinger equations under confined potentials[J].Computers and Mathematics withApplications,2002,44:317-322.
  • 8Tsutsumi M.Nonexistence of global solutions to the Cauchy problem for the dampednonlinear Schroedinger equations[J].SIAM J Math Anal,1984,15(2):357-366.
  • 9Tsutsumi M.On global solution to the initial-boundary value problem for the dampednonlinear Schroedinger equation[J].J Math Anal Appl,1990,145(2):328-341.
  • 10Fibich G.Self-focusing in the damped nonlinear Schroedinger equation[J].SIAM J Appl Math,2001,61(5):1680-1705.

共引文献15

同被引文献18

  • 1周鑫,胡先权.球谐环形振荡势薛定谔方程的精确解[J].重庆师范大学学报(自然科学版),2011,28(5):63-67. 被引量:3
  • 2蒋毅,蒲志林,孟宪良.三维空间中Klein-Gordon-Zakharov方程的精确解[J].四川师范大学学报(自然科学版),2007,30(3):262-265. 被引量:6
  • 3Mollenauer L F, Stolen R H, Gordon J P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers [ J ]. Phys Rev Lett, 1980,45 : 1095 - 1098.
  • 4Wazwaz A M. Reliable analysis for nonlinear Schr'tdinger equations with a cubic nonlinearity and a power law nonlinearity[ J]. Math Comp Model,2006,43:178 - 184.
  • 5Chow K W, A class of doubly periodic wave for nonlinear evolution equation[ J ]. Wave Motion ,2002,35:71 -90.
  • 6Brugarino T, Sciaeca M. Singullarity analysis and integrability for a HNLS equation governing pulse propagation in a generic fiber optics [ J ]. Opt Commun,2006 ,262 :250 - 256.
  • 7Tian B, Gao Y T. Variable - coefficient higher - order nonlinear Schrdinger model in optical fibers : New transformation with burstons, brightons and symbolic computation[ J]. Phys Lett,2006 ,A359:241 -248.
  • 8Panoiu N C, Mihalache D, Mazilu D, et al. Soliton dynamics of symmetry - endowed two - soliton solutions of the nonlinear Schr'odinger equation[J]. Chaos, Solitons & Fractals,2000,10:625 - 641.
  • 9Kruglov V I, Mechin D, Harvey J D. Self-similar solutions of the generalized Sehrodinger equation with distributed coefficients[J]. Optics Express ,2004,12:6198 - 6207.
  • 10Serkin V N, Hasegawa A. Novel soliton solutions of the nonlinear Schrlinger equation model[ J]. Phys Rev Lett, 2000,85: 4502 - 4505.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部