期刊文献+

双相组分孔隙介质波场数值模拟

Seismic Wave Field Simulation of Biphasic Porous Medium
下载PDF
导出
摘要 孔隙介质理论的研究以往常用试验分析方法,详细介绍了双相组分孔隙介质理论。基于宏观上等效的一系列体积分数加权平均组分分量方程,得到双相组分孔隙介质整体弹性矩阵与所有组分弹性矩阵之间的体积分数及耦合系数加权关系,得出各弹性参数的表达式。结合弹性波动力学中的Cauchy、Navier和本构三个方程,得到弹性波在等效后的组分孔隙介质中传播满足的波动方程。应用交错网格有限差分法求解该波动方程。采用不同孔隙度双相组分孔隙介质模型波场数值模拟,精确得到了混合波场。总结了双相组分型弹性孔隙流体介质中地震波传播的特点和规律。 The primary methods for studying porous media are experimental measurements and data analysis.Based on a series of components equation,the volume fraction and coupling coefficient between the elastic matrix of bi-phase medium and the elastic matrix of components are got,and then the elastic parameters expression is got.Combining the Navier,Cauchy and constitutive equation,the wave equation of porous medium is got.This wave equation with a one-order staggered-grid finite difference scheme is solved.The wave filed of porous medium with different porosity and summarizes seismic wave propagation characteristics of biphasic porous medium also are numerical modeled.
出处 《科学技术与工程》 2011年第9期1917-1921,共5页 Science Technology and Engineering
基金 国家"973"规划项目(2007CB209600)资助
关键词 孔隙介质 体积模量 剪切模量 有限差分 波场模拟 porous medium bulk modulus shear modulus finite difference wave field simulation
  • 相关文献

参考文献18

  • 1Biot M A. Theory of propagation of elastic waves in a fluid - saturated porous solid. 1. Low -frequency range. J Acoust Soc Am, 1956;28: 168-178.
  • 2Blot M A. Theory of propagation of elastic waves in a fluid - saturated porous solid. 1. higher - frequency range J Acoust Soc Am, 1956 ;28 : 179-191.
  • 3Biot M A. Mechanics deformation and acoustic propagation in porous media. J Appl Phys, 1962 ;33 : 1482-1498.
  • 4Biot M A. Generalized theory of acoustic propagation in porous dissi- pative media. J Acoust Soc Am, 1962 ; 34 : 1254-1264.
  • 5Gassmann F. Uber die elastizitat poroser medien: verteljahrsschrift der naturforschenden gesellschaft in zurich, 1951 ;96:1-21.
  • 6Gassmann F. Elastic waves through a packing of spheres. Geophysics, 1951 ;16(4) :673--685.
  • 7Brown R J S, Korringa J. On the dependence of the elastic properties of a porous rock on the compressibility of a pore fluid. Geophysics, 1975 ;40:608-616.
  • 8Berryman J G, Milton G W. Exact results for generalized Gassmann' s equation in composite porous media with two constituents. Geophysics, 1991 ;56(12) :1950-1960.
  • 9Berryman J G. Origin of Gassmann' s equations. Geophysics, 1999 ;64 (5) : 1627-1629.
  • 10Carcione J M, Helle H B, Santos J E, et al. A constitutive equation and generalized Gassmann modulus for multimineral porous media. Geophysics, 2005 ;70 (2) : N17-N26.

二级参考文献7

共引文献248

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部