期刊文献+

具有功能性反应的捕食模型的持久性和灭绝性

Permanence and Extinction of a Class of Predator-prey Model with Functional Response
下载PDF
导出
摘要 讨论了一类具有第Ⅱ类功能性反应函数的捕食-被捕食模型。分别给出了捕食者和被捕食者种群均灭绝;捕食者种群灭绝,而被捕食者种群幸存;以及两种群长期共存的条件。最后通过实例说明所得结论的可实现性。 A class of predator-prey model with functional response is investigated.The conditions are obtained under which all the species become extinct,the predator species become extinct while the prey species keep permanent and the two species keep permanent,respectively.Moreover,the feasibility of the result is shown by example.
作者 王爱丽
出处 《科学技术与工程》 2011年第7期1525-1526,1534,共3页 Science Technology and Engineering
基金 宝鸡文理学院重点科研计划项目(ZK0912) 陕西省教育厅科研项目(2010JK399)资助
关键词 功能性反应 稳定性 捕食-被捕食模型 functional response stability predator-prey model
  • 相关文献

参考文献3

二级参考文献17

  • 1田亚品,陈斯养.N-种群Lotka-Volterra扩散竞争反馈控制生态系统的持久性和全局渐近性[J].应用数学,2007,20(3):485-490. 被引量:10
  • 2Bence, J. R., Nisbet, R. M.: Space limited recruitment in open systems: The importance of time delays,Ecology, 70, 1434 1441 (1989).
  • 3Aiello, W. G., Freedman, H. I.: A time delay model of single species growth with stage structure. Math.Biosci, 101, 139-156 (1990).
  • 4Wang, W., Chen, L.: A predator-prey system with stage-structure for predator. Computers Math. Applic.,33(8), 83-91 (1997).
  • 5Wang, W.: Global'dynamics of a population model with stage structure for predator, in: L. Chen et al (Eds), Advanced topics in Biomathematics, Proceeding of tile international conference on mathematical biology, World Scientific Publishing Co. Pte. Ltd., 253 257 (1997).
  • 6Magnusson, K. G.: Destabilizing effect of cannibalism on a structured predator-prey system. Math. Biosci,155, 61-75 (1999).
  • 7Smith, H. L.: Systems of ordinary differential equations which generate an order preserving flow. SIAM Rev., 30, 87-98 (1988).
  • 8Hirsh, M. W.: Systems of differential equations which are competitive or cooperative,Ⅳ: structural stabilities in three dimensional systems, SIAM J. Math. Anal., 21, 1225-1234 (1990).
  • 9Verhulst, F.: Nonlinear differential equations and dynamical systems, Springer. Berlin (1990).
  • 10Hale, J. K.: Ordinary differential equations, Wiley, New York (1969).

共引文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部