期刊文献+

基于CA-CMAC的Q学习截球算法

Intercepting Algorithm Based on CA-CMAC Q-learning
下载PDF
导出
摘要 CMAC神经网络的主要优点在于其局部修正权重系数,使每次修改的权重系数极少,因此具有快速学习能力,非常适合于在线实时控制。但是在实际的使用过程中,CMAC算法会产生可信度的分配问题。因此使用CA-CMAC来代替CMAC。Q学习是一种重要的强化学习方法,将Q学习与CA-CMAC网络相结合用到Robocup仿真环境中,使智能体通过学习训练球员的截球能力。通过实际的仿真取得了很好的效果,证明算法是有效可行的。 The main advantage of CMAC neural network is the partial correction of weight coefficient.As change very little weight coefficient to get faster learning ability,CMAC is very suitable for real time control.But in the actual process of using,CMAC often faces the problem occurred by the uneven distribution of units' credibility,therefore used CA-CMAC instead of CMAC.Q-learning is an important method of reinforcement learning,combined Q-learning and CA-CMAC neural network uses the algorithm in Robocup simulation for improving the agent's ability of intercepting.Good results through the simulation are got which shows that the algorithm is deasible and effective.
作者 申迅 刘国栋
出处 《科学技术与工程》 2011年第7期1580-1582,共3页 Science Technology and Engineering
关键词 ROBOCUP CA-CMAC Q学习 智能体 robocup CA-CMAC Q-learing agent
  • 相关文献

参考文献6

二级参考文献24

  • 1朱大奇,张伟.基于平衡学习的CMAC神经网络非线性辨识算法[J].控制与决策,2004,19(12):1425-1428. 被引量:20
  • 2杨璐,洪家荣,黄梯云.用加强学习方法解决基于神经网络的时序实时建模问题[J].哈尔滨工业大学学报,1996,28(4):136-139. 被引量:2
  • 3阎平凡.再励学习——原理、算法及其在智能控制中的应用[J].信息与控制,1996,25(1):28-34. 被引量:30
  • 4杨威,李俊山,张媛莉.基于HLA的雷达对抗训练仿真系统研究[J].微计算机信息,2006,22(01S):240-242. 被引量:19
  • 5Piao Songhao, Hang Bingrong. Fast Reinforcement earning Appro-ach to Cooperative Behavior Acquisition in Multi-agent System.Proceedings of the 2002 IEEE/RSJ Intl. Conference on IntelligentRobots and Systems, Lausanne, Switzerland. 2002-10:871- 875
  • 6洪炳镕.机器人足球技术的发展战略[A].中国人工智能学会第9届全国学术年会论文集[C].2001.
  • 7STONE P , VELOSO M. Muhi2agent systems : a survey from a machine learning perspective [ R] . CMU CS technical re2 port , No. CMU - CS - 97 - 193.Server. Proc. of IROS Workshop on Robocup, 1996
  • 8Nobuo S, Akira H. A Muhiagent Reinforcement Learning Algorithm Using Extended Optimal Response. Proc. of the First International Joint Conference on Autonomous Agents & Multiagent Systems,Bologna, Italy, 2002-07:370- 377
  • 9Hu Junling, Michael W P. Muhiagent Reinforcement Learning: Theoretical Framework and an Algorithm. Proc.15th International Conf. on Machine Learning 1998:242- 250
  • 10Caroline C, Craig B. The Dynamics of Reinforcement Learning in Cooperative Muhiagent Systems. In Proc. Workshop on Multi-agent Learning, 1997:602- 608

共引文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部