期刊文献+

基于代理模型的注射参数迭代优化方法 被引量:2

Iterative optimization method for injection parameters based on surrogate model
下载PDF
导出
摘要 型腔压力和熔体温差是反映塑料制品质量好坏的2项重要质量指标.考虑到塑料制品的薄壁特性,从黏性流体力学的基本方程出发,建立一种简化流动模型作为代理模型代替耗时的塑料注射成型模拟软件快速预测上述质量指标,基于代理模型的预测结果,采用粒子群算法实现注射参数的迭代优化,该方法计算速度快效率高,对知识的依赖程度低.最后通过实验对代理模型的正确性和优化方法的有效性进行验证,实验结果表明,基于代理模型的型腔压力预测值与实验值吻合较好,相对误差值只有8.41%,提出的优化方法与响应面方法的优化结果基本一致,但运行时间仅为响应面方法的0.02%. Cavity pressure and temperature difference are two important quality criteria.Considering that most injection molded parts have a sheet like geometry,a fast strip analysis model based on mechanics equations for viscous fluid,was adopted as a surrogate model to approximate the time-consuming computer simulation software for predicating the above quality criteria.According to the predicted quality criteria,a particle swarm optimization algorithm was employed to find out the optimum injection parameters.The proposed optimization method can optimize the injection parameters in short time and it does not rely on any knowledge of molding process.Finally,two experiments were employed to validate the surrogate model and the proposed optimization method.Experimental results show that the cavity pressure predicted by the surrogate model agree well with the experimental data,with the relative error being less than 8.41%,and the results of the proposed optimization method are nearly identical to that of response surface method,while the required time of the proposed method is only 0.02% of that of response surface method.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第2期197-200,227,共5页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(50875095 50905162) 材料成形与模具技术国家重点实验室开放基金资助项目(2010-P01)
关键词 注射成型 注射参数 代理模型 简化流动模型 粒子群优化 injection molding injection parameters surrogate model fast strip analysis model particle swarm optimization.
  • 相关文献

参考文献10

  • 1TURNG L S, PEIC M. Computer aided process and de- sign optimization for injection moulding [J] Proceedingsof the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2002, 216(12) : 1523 - 1532.
  • 2SHEN C Y, WANG L X, LI Q. Optimization of injec- tion molding process parameters using combination of artificial neural network and genetic algorithm method [J]. Journal of Materials Processing Technology, 2007, 183(2/3): 412- 418.
  • 3ZHOU J, TURNG L S, KRAMSCHUSTER A. Single and multi objective optimization for injection molding u- sing numerical simulation with surrogate models and ge- netic algorithms [J]. International Polymer Processing, 2008, 21(5): 509-520.
  • 4GAO Y H, WANG X C. Surrogate-based process opti- mization for reducing warpage in injection molding [J] . Journal of Materials Processing Technology, 2009, 209 (3) : 1302 - 1309.
  • 5PANDELIDIS I, ZOU Q. Optimization of injection molding design part Ⅱ: molding conditions optimization [J]. Polymer Engineering and Science, 1990, 30 (15) : 883 - 892.
  • 6KUMAR A, GHOSHDATIDAR P S, MUJU M K. Computer simulation of transport processes during in- jection mold-filling and optimization of the molding con- ditions [J]. Journal of Materials Processing Technology, 2002, 120(1/3): 438 - 449.
  • 7LAM Y C, BRITTON G A, DENG Y M. A computer- aided system for an optimal moulding conditions design using a simulation-based approach [J]. International Journal of Advanced Manufacturing Technology, 2003, 22(7/8) : 574 - 586.
  • 8ZHOU H M, LID Q. Integrated simulation of the in- jection molding process with stereolithography molds[J]. International Journal of Advanced Manufacturing Technology, 2006, 28(1/2) : 53 - 60.
  • 9赵朋,周华民,严波,李德群.塑料注射成型中注射压力和熔体温度的快速预测[J].中国塑料,2007,21(9):53-56. 被引量:7
  • 10贺益君,陈德钊.适于混合整数非线性规划的混合粒子群优化算法[J].浙江大学学报(工学版),2008,42(5):747-751. 被引量:12

二级参考文献15

  • 1王鹏程,姚涛.基于灰色GM(1,1)模型的注塑成型压力的预测与研究[J].内蒙古工业大学学报(自然科学版),2004,23(3):201-204. 被引量:2
  • 2BORCHERS B, MITCHELL J E. An improved branch and bound algorithm for mixed-integer nonlinear programming[J]. Computers and Operations Research, 1994, 21(4):359-367.
  • 3DURAN M A, GROSSMANN I E. An outer-approximation algorithm for a class of mixed-integer nonlinear programs [J]. Mathematical Programming, 1986, 36 (3) :307 - 339.
  • 4WESTERLUND T, PETTERSSON F. A cutting plane method for solving convex MINLP problems [J]. Computers and Chemical Engineering, 1995, 19:S131-S136.
  • 5CARDOSO M F, SALCEDO R L, FEYO DE AZEVEDO S, et al. A simulated annealing approach to the solution of MINLP problems[J]. Computers and Chemical Engineering, 1997, 21(12):1349- 1364.
  • 6LIN B, MILLER D C. Tabu search algorithm for chemical process optimization[J]. Computers and Chemical Engineering, 2004, 28(11): 2287-2306.
  • 7COSTA L, OLIVEIRA P. Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems[J]. Computers and Chemical Engineering, 2001, 25(2/3):257-266.
  • 8KENNEDY J, EBERHART R, Particle swarm optimization[C] //Proceedings of IEEF, International Conference on Neural Networks. Piscataway:IEEE, 1995:1942- 1948.
  • 9KITAYAMA S, ARAKAWA M, YAMAZAKI K. Penalty function approach for the mixed discrete nonlinear problems by particle swarm optimization [J]. Structural anti Multidisciplinary Optimization, 2006, 32(3) : 191 - 202.
  • 10XIE X F, ZHANG W J, YANG Z L. Hybrid particle swarm optimizer with mass extinction [C]//International Conference on Communication, Circuits and Systems. Chengdu: IEEE, 2002, 2: 1170- 1173.

共引文献17

同被引文献15

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部