期刊文献+

带有色观测噪声的多传感器ARMA模型信息融合辨识 被引量:2

Information Fusion Indentification of Mutisensor ARMA Model with Colored Measurement Noise
下载PDF
导出
摘要 对带已知有色观测噪声的未知自回归滑动平均模型(ARMA)模型,提出了一种两段信息融合辨识方法:第一段用递推辅助变量(RIV)算法得到自回归(AR)参数的局部和融合一致估值,第二段用Gevers-Wouters算法和用伪逆求解线性方程组方法得到滑动平均(MA)参数和噪声方差的局部和融合一致估值。该方法可用于语言增强信号处理问题。一个仿真例子说明其有效性。 For the unknown autoregressive moving average(ARMA) model with known colored measurement noise,a two-stage information fusion identification method is presented: In the first stage,the local and fused estimates of the autoregressive(AR) paraments are obtained by the recursive instrumental variable(RIV),and in the second stage,the local and fused estimates of the moving average(MA) paraments and noise variance are obtained by the Gevers-Wouters algorithm and by solving linear equation by the pseudoinverse.These fused estimators have consistency.This method can be applied to signal processing with respect to speech enhancement.A simulation example shows its effectiveness.
作者 李恒 邓自立
出处 《科学技术与工程》 2011年第8期1668-1672,共5页 Science Technology and Engineering
基金 国家自然科学基金(60874063) 黑龙江大学自动控制重点实验室项目资助
关键词 多传感器信息融合估计 ARMA模型 有色观测噪声 两段辨识算法 一致性 multisensor information fusion ARMA model colored measurement noise two-stage identifaction algorithm consistency
  • 相关文献

参考文献7

  • 1高媛,徐慧勤,邓自立,孟华,王欣,毛琳.多传感器系统模型参数和噪声统计的一种信息融合辨识方法[J].科学技术与工程,2009,9(17):4896-4900. 被引量:15
  • 2高媛,王伟玲,王强,邓自立.多传感器系统噪声统计辨识的一种相关方法[J].科学技术与工程,2009,9(1):11-15. 被引量:6
  • 3Gao Y, Xu H Q ,Deng Z L. Multi-stage information fusion identification methods for multisensor ARMA signals with white measure noise. 2010 8th IEEE International Conference on Control and Automation, Xiamen, China, 2010 : 145-1119.
  • 4Gao Y, Xu H Q, Deng Z L. Information fusion estimation of noise statistics for nmltisensor systems. 2009 Chinese Control and Decision Conference, 2009 : 1128-1131.
  • 5Ljung L. System identification, theory for the user. Englewood Cliffs, N J: Prentice ftall PTR, 1999.
  • 6Gevers M, Warears W R E. An innovations approach to discrete-time stochastic realization problem. Quartely Journal on Auematic Control, 1998;19(2) :90-110.
  • 7Moir T J, Campbell D R, Dalois H S. A polynomial approach to optimal and adaptive filtering with application to speech enhancement. IEEE Trans. Signal Processing, 1991 ;39 ( 5 ) : 1221-1224.

二级参考文献6

  • 1贾文静,张鹏,邓自立.辨识动态系统噪声方差Q和R的新方法[J].科学技术与工程,2006,6(14):2008-2011. 被引量:7
  • 2Jang C W, Juang J C, Kung F C, Adaptive fault detection in real-time GPS positioning. IEE Proceedings-Radar. Sonar Navigation, 2000; 147 (5) :254-258.
  • 3Deng Z L, Gao Y, Li C B, et al. Self-tuning decoupled information fusion Wiener state component fihers and their convergence. Automatica, 2008; 44(3) : 685-695.
  • 4Gao Y, Jia W J, Sun X J, et al. Sell-tuning mullisensor weighted measurement fusion Kalman filter. IEEE Trans on Aerospace and Electronic Systems,2009 ; 45 ( 1 ) : 179-191.
  • 5Ljung L. System identification, theory for the user ( Second Edition). Prentice-Hall PTR. Beijing : Tsinghua University Press, 1999.
  • 6高媛,王伟玲,王强,邓自立.多传感器系统噪声统计辨识的一种相关方法[J].科学技术与工程,2009,9(1):11-15. 被引量:6

共引文献15

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部