期刊文献+

Interpolation of Vector Measures

Interpolation of Vector Measures
原文传递
导出
摘要 Let (Ω, ∑) be a measurable space and mo : E→ Xo and m1 : E → X1 be positive vector measures with values in the Banach KSthe function spaces Xo and X1. If 0 〈 a 〈 1, we define a X01-ax1a new vector measure [m0, m]a with values in the Calderdn lattice interpolation space and we analyze the space of integrable functions with respect to measure [m0, m1]a in order to prove suitable extensions of the classical Stein Weiss formulas that hold for the complex interpolation of LP-spaces. Since each p-convex order continuous Kothe function space with weak order unit can be represented as a space of p-integrable functions with respect to a vector measure, we provide in this way a technique to obtain representations of the corresponding complex interpolation spaces. As applications, we provide a Riesz-Thorin theorem for spaces of p-integrable functions with respect to vector measures and a formula for representing the interpolation of the injective tensor product of such spaces. Let (Ω, ∑) be a measurable space and mo : E→ Xo and m1 : E → X1 be positive vector measures with values in the Banach KSthe function spaces Xo and X1. If 0 〈 a 〈 1, we define a X01-ax1a new vector measure [m0, m]a with values in the Calderdn lattice interpolation space and we analyze the space of integrable functions with respect to measure [m0, m1]a in order to prove suitable extensions of the classical Stein Weiss formulas that hold for the complex interpolation of LP-spaces. Since each p-convex order continuous Kothe function space with weak order unit can be represented as a space of p-integrable functions with respect to a vector measure, we provide in this way a technique to obtain representations of the corresponding complex interpolation spaces. As applications, we provide a Riesz-Thorin theorem for spaces of p-integrable functions with respect to vector measures and a formula for representing the interpolation of the injective tensor product of such spaces.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第1期119-134,共16页 数学学报(英文版)
关键词 INTERPOLATION Banach function space vector measure Interpolation, Banach function space, vector measure
  • 相关文献

参考文献19

  • 1Stein, E. M., Weiss, G.: Interpolation of operators with change of measures. Trans. Amer. Math. Soc., 87, 159 -172 (1958).
  • 2Bergh, J., Lofstrom, J.: Interpolation Spaces, An Introduction, Grundlehren der Mathematischen Wis- senschaften, 223, Springer-Verlag, Berlin, 1976.
  • 3Calderon, A. P.: Intermediate spaces and interpolation, the complex method. Studia Math., 24, 113-190, (1964).
  • 4Curbera, G. P.: Operators into L^1 of a vector measure and applications to Banach lattices. Math. Ann., 293, 317- 330 (1992).
  • 5Fernandez, A., Mayoral, F., Naranjo, F., et al.: Spaces of p-integrable functions with respect to a vector measure. Positivity, 10, 1-16 (2006).
  • 6Sanchez-Perez, E. A.: Compactness arguments for spaces of p-integrable functions with respect to a vector measure and factorization of operators through Lebesgue-Bochner spaces. Illinois J. Math., 45, 907-923 (2001).
  • 7Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces Ⅱ, Function Spaces, Ergebnisse der Mathematik und ihre Grenzgebiete, 97, Springer-Verlag, Berlin, Heidelberg, New York, 1979.
  • 8Lozanovskil, G. Ja.: Certain Banach lattices. Sibirsk. Mat. Z., 10, 584-599 (1969).
  • 9Sestakov, V. A.: Complex interpolation in Banach spaces of measurable functions. Vestnik Leningrad. Univ., 19, 64- 68 (1974).
  • 10Krein, S. G., Petunin, Ju. I., Semenov, E. M.: Interpolation of Linear Operators, Translations of Mathe- matical Monographs, 54, American Mathematical Society, Providence, RI, 1985.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部