期刊文献+

A Sufficient Degree Condition for a Graph to Contain All Trees of Size k

A Sufficient Degree Condition for a Graph to Contain All Trees of Size k
原文传递
导出
摘要 The Erdos-Sos conjecture says that a graph G on n vertices and number of edges e(G) 〉 n(k - 1)/2 contains all trees of size k. In this paper we prove a sufficient condition for a graph to contain every tree of size k formulated in terms of the minimum edge degree ξ(G) of a graph G defined as {(G) = min{d(u) + d(v) - 2 : uv ∈ E(G)}. More precisely, we show that a connected graph G with maximum degree △(G) ≥ k and minimum edge degree {(G) 〉 2k - 4 contains every tree of k edges if dG(x) + dG(y) ≥ 2k - 4 for all pairs x, y of nonadjacent neighbors of a vertex u of dG(u) ≥ k. The Erdos-Sos conjecture says that a graph G on n vertices and number of edges e(G) 〉 n(k - 1)/2 contains all trees of size k. In this paper we prove a sufficient condition for a graph to contain every tree of size k formulated in terms of the minimum edge degree ξ(G) of a graph G defined as {(G) = min{d(u) + d(v) - 2 : uv ∈ E(G)}. More precisely, we show that a connected graph G with maximum degree △(G) ≥ k and minimum edge degree {(G) 〉 2k - 4 contains every tree of k edges if dG(x) + dG(y) ≥ 2k - 4 for all pairs x, y of nonadjacent neighbors of a vertex u of dG(u) ≥ k.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第1期135-140,共6页 数学学报(英文版)
关键词 Erdos-Sos conjecture Erdos-Sos conjecture
  • 相关文献

参考文献20

  • 1Erdos, P., Gallai, T.: On maximal paths and circuits of graphs. Acta Math. Acad. Sci. Hungar., 10, 337 356 (1959).
  • 2Erdos, P.: Extremal problems in graph theory. In: Theory of Graphs and its Applications (M. Fiedler Ed.), Academic Press, 1965, 29-36.
  • 3Wozniak, M.: On the Erdos-Sos conjecture. J. Graph Theory, 21(2), 229-234 (1996).
  • 4Moser, W., Pach, J.: Recent developments in combinatorial geometry. In: New Trends in Discrete and Computational Geometry, Springer, New York, 1993.
  • 5Sidorenko, A. F.: Assymptotic solution for a new class of forbidden r-graphs. Combinatorica, 9(2), 207-215 (1989).
  • 6Eaton, N.,Tiner, G.: On the ErdSs SSs conjecture and graphs with large minimum degree. Ars Comb., 95, 373- 382 (2010).
  • 7Fan, G., Sun, L.: The Erdos-Sos conjecture for spiders. Discrete Math., 307, 3055-3062 (2007).
  • 8McLennan, A.: The Erdos-Sos conjecture for trees of diameter four. J. Graph Theory, 291 301 (2005).
  • 9Sauer, N., Spencer, J.: Edge disjoint placement of graphs. J. Combin. Theory Set. B, 25, 295-302 (1978).
  • 10Bing, Z.: A note on the Erdos-Sos conjecture. Aeta Math. Scientia, 4(3), 287-289 (1984).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部