期刊文献+

Nonlinear Preserver Problems on B(H)

Nonlinear Preserver Problems on B(H)
原文传递
导出
摘要 Let H be a complex Hilbert space of dimension greater than 2, and B(H) denote the Banach algebra of all bounded linear operators on H. For A, B C B(H), define the binary relation A ≤ B by A*A = A*B and AA* = AB*. Then (B(H), "〈.") is a partially ordered set and the relation "≤" is called the star order on B(H). Denote by Bs(H) the set of all self-adjoint operators in B(H). In this paper, we first characterize nonlinear continuous bijective maps on Bs(H) which preserve the star order in both directions. We characterize also additive maps (or linear maps) on B(H) (or nest algebras) which are multiplicative at some invertible operator. Let H be a complex Hilbert space of dimension greater than 2, and B(H) denote the Banach algebra of all bounded linear operators on H. For A, B C B(H), define the binary relation A ≤ B by A*A = A*B and AA* = AB*. Then (B(H), "〈.") is a partially ordered set and the relation "≤" is called the star order on B(H). Denote by Bs(H) the set of all self-adjoint operators in B(H). In this paper, we first characterize nonlinear continuous bijective maps on Bs(H) which preserve the star order in both directions. We characterize also additive maps (or linear maps) on B(H) (or nest algebras) which are multiplicative at some invertible operator.
作者 Jian Lian CUI
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第1期193-202,共10页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China (Grant Nos. 10871111, 10501029) and the Specialized Research Fund for Doctoral Program of Higher Education (Grant No. 200800030059)
关键词 Star order fundamental operator algebras nest algebras preserver problems Star order, fundamental operator algebras, nest algebras, preserver problems
  • 相关文献

参考文献15

  • 1Molnar, L.: Order-automorphisms of the set of bounded observables. J. Math. Phys., 42, 5904-5909 (2001).
  • 2Olson, M. P.: The selfadjoint operators of avon Neumann algebra form a conditionally complete lattice. Proc. Amer. Math. Soc., 28, 537-544 (1971).
  • 3Molnar, L., Semrl, P.: Spectral order automorphisms of the spaces of Hilbert space effects and observables. Lett. Math. Phys., 80, 239-255 (2007).
  • 4Hestenes, M. R.: Relative Hermitian matrices. Pacific J. Math., 11, 224-245 (1961).
  • 5Drazin, M. P.: Pseudoinverse in associative rings and semigroups. Amer. Math. Monthly, 65, 506- 514 (1958).
  • 6Gudder, S.: An order for quantum observable. Math. Slovaca, 56, 573 (2006).
  • 7Dolinar, G., Molnar, L.: Maps on quantum observables preserving the gudder order. Reports on Math. Phys., 60(1), 159-166 (2007).
  • 8Cui, J. L., Hou, J. C.: Characterizations of nest algebra automorphisms (in Chinese). Chinese Ann. Math. Set. A, 23(4), 521-530 (2002).
  • 9Cui, J. L., Hou, J. C.: Linear maps on von Neumann algebras preserving zero products or tr-rank. Bull. Aust. Math. Soc., 65, 79- 91 (2002).
  • 10Semrl, P.: Linear mappings preserving Sqluare-zero matrices. Bull. Aust. Math. Soc., 48(3), 365-370 (1993).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部