期刊文献+

Alliance Free and Alliance Cover Sets

Alliance Free and Alliance Cover Sets
原文传递
导出
摘要 A defensive (offensive) k-alliance in F = (V, E) is a set S C V such that every v in S (in the boundary of S) has at least k more neighbors in S than it has in V / S. A set X C_ V is defensive (offensive) k-alliance free, if for all defensive (offensive) k-alliance S, S/ X ≠ 0, i.e., X does not contain any defensive (offensive) k-alliance as a subset. A set Y C V is a defensive (offensive) k-alliance cover, if for all defensive (offensive) k-alliance S, S ∩ Y ≠ 0, i.e., Y contains at least one vertex from each defensive (offensive) k-alliance of F. In this paper we show several mathematical properties of defensive (offensive) k-alliance free sets and defensive (offensive) k-alliance cover sets, including tight bounds on their cardinality. A defensive (offensive) k-alliance in F = (V, E) is a set S C V such that every v in S (in the boundary of S) has at least k more neighbors in S than it has in V / S. A set X C_ V is defensive (offensive) k-alliance free, if for all defensive (offensive) k-alliance S, S/ X ≠ 0, i.e., X does not contain any defensive (offensive) k-alliance as a subset. A set Y C V is a defensive (offensive) k-alliance cover, if for all defensive (offensive) k-alliance S, S ∩ Y ≠ 0, i.e., Y contains at least one vertex from each defensive (offensive) k-alliance of F. In this paper we show several mathematical properties of defensive (offensive) k-alliance free sets and defensive (offensive) k-alliance cover sets, including tight bounds on their cardinality.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第3期497-504,共8页 数学学报(英文版)
关键词 Defensive alliance offensive alliance alliance free set alliance cover set Defensive alliance, offensive alliance, alliance free set, alliance cover set
  • 相关文献

参考文献1

二级参考文献25

  • 1Kristiansen, P., Hedetniemi, S. M., Hedetniemi, S. T.: Alliances in graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 48, 157-177 (2004).
  • 2Brigham, R. C., Dutton, R. D., Hedetniemi, S. T.: A sharp lower bound on the powerful alliance number of Cm χ Cn. Congressus Numerantium, 167, 57-63 (2004).
  • 3Brigham, R. C., Dutton, R. D., Haynes, T. W., et al.: Powerful alliances in graphs. Discrete Mathematics, 309(8), 2140-2147 (2009).
  • 4Chellali, M., Haynes, T.: Global alliances and independence in trees. Discussiones Mathematicae Graph Theory, 27(1), 19-27 (2007).
  • 5Favaron, O., Fricke, G., Goddard, W., et al.: Offensive alliances in graphs. Discussiones Mathematicae Graph Theory, 24(2), 263-275 (2004).
  • 6Fernau, H., Rodriguez, J. A., Sigarreta, J. M.: Offensive k-alliances in graphs. Discrete Applied Mathemat- ics, 157(1), 177-182 (2009).
  • 7Haynes, T. W., Hedetniemi, S. T., Henning, M. A.: Global defensive alliances in graphs. Electronic Journal of Combinatorics, 10, 139-146 (2003).
  • 8Rodriguez, J. A., Sigarreta, J. M.: Spectral study of alliances in graphs. Discussiones Mathematicae Graph Theory, 27(1), 143-157 (2007).
  • 9Rodriguez-Velazquez, J. A., Sigarreta, J. M.: Global alliances in planar graphs. AKCE International Your- hal of Graphs and Combinatorics, 4(1), 83-98 (2007).
  • 10Rodrfguez-Veiazquez, J. A., Yero, I. G., Sigarreta, J. M.: Defensive k-alliances in graphs. Applied Mathe- matics Letters, 22, 96-100 (2009).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部