期刊文献+

On Uniform Convexity of Banach Spaces 被引量:2

On Uniform Convexity of Banach Spaces
原文传递
导出
摘要 This paper gives some relations and properties of several kinds of generalized convexity in Banach spaces. As a result, it proves that every kind of uniform convexity implies the Banach-Sakes property, and several notions of uniform convexity in literature are actually equivalent. This paper gives some relations and properties of several kinds of generalized convexity in Banach spaces. As a result, it proves that every kind of uniform convexity implies the Banach-Sakes property, and several notions of uniform convexity in literature are actually equivalent.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第3期587-594,共8页 数学学报(英文版)
基金 Supported b-y National Natural Science Foundation of China (Grant No. 10926042 and 11001231), China Postdoctoral Science Foundation (Grant No. 20090460356), RFDP (Grant No. 200803841018)Acknowledgements The authors would like to thank Professor Cheng Lixin and Professor Bu Shangquan for many helpful conversations on this paper, and also thank the referee for many valuable suggestions.
关键词 Uniformly convex space Banach-Sakes property Banach space Uniformly convex space, Banach-Sakes property, Banach space
  • 相关文献

参考文献2

二级参考文献8

  • 1Li Xin CHENG,Yan Mei TENG.Certain Subsets on Which Every Bounded Convex Function Is Continuous[J].Acta Mathematica Sinica,English Series,2007,23(6):1063-1066. 被引量:2
  • 2Ger, R., Kuczma, M.: On the boundedness of convex functions and additive functions. Aequat. Math., 4, 157-162 (1970).
  • 3Jablonski, W.: On a class of sets connected with a convex function. Abh. Math. Sem. Univ. Hamburg, 69, 205-210 (1999).
  • 4Rockafellar, R. T.: Convex Analysis, Princeton Univ. Press, 1970.
  • 5Holmes, R.: Geometric Functional Analysis and its Applications, Springer-Verlag, 1975.
  • 6Phelps, R. R.: Convex functions, monotone operators, and differentiability, Lect. Notes in Math., 1364, Springer-Verlag, 1989.
  • 7BrΦndsted, A.: An Introduction to convex Polytopes, Springer-Verlag, 1983.
  • 8Wu, C. X, Cheng, L. X.: A note on differentiability of convex functions. Proc. Amer. Math. Soc., 121, 1057-1062 (1994).

共引文献8

同被引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部