期刊文献+

Genus Polynomials of Cycles with Double Edges 被引量:1

Genus Polynomials of Cycles with Double Edges
原文传递
导出
摘要 Two cellular embeddings i : G→S and j : G → S of a connected graph G into a closed orientable surface S are equivalent if there is an orientation-preserving surface homeomorphism h : S → S such that hi = j. The genus polynomial of a graph G is defined by g[G](x)=∞∑g=0agx^g, where ag is the number of equivalence classes of embeddings of G into the orientable surface Sg with g genera. In this paper, we compute the genus polynomial of a graph obtained from a cycle by replacing each edge by two multiple edges. Two cellular embeddings i : G→S and j : G → S of a connected graph G into a closed orientable surface S are equivalent if there is an orientation-preserving surface homeomorphism h : S → S such that hi = j. The genus polynomial of a graph G is defined by g[G](x)=∞∑g=0agx^g, where ag is the number of equivalence classes of embeddings of G into the orientable surface Sg with g genera. In this paper, we compute the genus polynomial of a graph obtained from a cycle by replacing each edge by two multiple edges.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第3期595-606,共12页 数学学报(英文版)
关键词 EMBEDDING GENUS genus distribution genus polynomial Embedding, genus, genus distribution, genus polynomial
  • 相关文献

参考文献12

  • 1Biggs, N. L., White, A. T.: Permutation Groups and Combinatorial Structures, Cambridge University Press, Cambridge-New York, 1979.
  • 2Gross, J. L., Robbius, D. P., Tucker, T. W.: Genus distributions for bouquets of circles. J. Combin. Theory Set. B, 47, 292-306 (1989).
  • 3Kwak, J. H., Lee, J.: Genus polynomials of dipoles. Kyungpook Math. J., 33, 115-125 (1993).
  • 4Chen, Y. C., Liu, Y. P., Wang, T.: The total embedding distributions of cacti and necklaces. Acta Mathematica Sinica, English Series, 22, 1583-1590 (2006).
  • 5Furst, M. L., Gross, J. L., Statman, R.: Genus distributions for two classes of graphs. J. Combin. Theory Ser. B, 46, 22-36 (1989).
  • 6Tesax, E. H.: Genus distributions of Ringel Ladders. Discrete Math., 216, 235-252 (2000).
  • 7Feng, Y. Q., Kwak, J. H., Zhou, J. X.: Congruence classes of orientable 2-ceU embeddings of bouquets of circles and dipoles. Electron. J. Combin., 17, 15pp (2010).
  • 8Kwak, J. H., Shim, S. H.: Total embedding distributions for bouquets of circles. Discrete Math., 248, 93-108 (2002).
  • 9Marusic, D., Nedela, R.: Maps and half-transitive graph of valency 4. European J. Combin., 19, 345-354 (1998).
  • 10Xu, B. G., Lu, X. X.: A structural theorem on embedded graphs and its application to colorings. Acta Mathematica Sinica, English Series+ 25, 47-50 (2009).

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部