期刊文献+

Inequality of Nordhaus-Gaddum Type for Total Outer-connected Domination in Graphs

Inequality of Nordhaus-Gaddum Type for Total Outer-connected Domination in Graphs
原文传递
导出
摘要 A set S of vertices in a graph G = (V, E) without isolated vertices is a total outer-connected dominating set (TCDS) of G if S is a total dominating set of G and G[V - S] is connected. The total outer-connected domination number of G, denoted by γtc(G), is the minimum cardinality of a TCDS of G. For an arbitrary graph without isolated vertices, we obtain the upper and lower bounds on γtc(G) + γytc(G), and characterize the extremal graphs achieving these bounds. A set S of vertices in a graph G = (V, E) without isolated vertices is a total outer-connected dominating set (TCDS) of G if S is a total dominating set of G and G[V - S] is connected. The total outer-connected domination number of G, denoted by γtc(G), is the minimum cardinality of a TCDS of G. For an arbitrary graph without isolated vertices, we obtain the upper and lower bounds on γtc(G) + γytc(G), and characterize the extremal graphs achieving these bounds.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第3期607-616,共10页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China (Grant Nos. 60773078, 10971131) and Shanghai Leading Academic Discipline Project (Grant No. S30104) Thank the referees sincerely for all of the helpful suggestions.
关键词 GRAPH domination number total outer-connected domination Nordhaus-Gaddum inequality Graph, domination number, total outer-connected domination, Nordhaus-Gaddum inequality
  • 相关文献

参考文献1

二级参考文献10

  • 1E.J. Cockayne, G. Fricke and C.M. Mynhardt. On a Nordhaus-Gaddum type problem for independent domination. Discrete Math., 1995, 138:199-205.
  • 2E.J. Cockayne, D. McCrea, C.M. Mynhardt. Nordhaus-Gaddum results for CO-irredundance in graphs. Discrete Math., 2000, 211:209-215.
  • 3R. Haas, T.B. Wexler. Signed domination numbers of a graph and its complement. Discrete Math., 2004, 283:87-92.
  • 4F. Harary, T.W. Haynes. Nordhaus-Gaddum inequalities for domination in graphs. Discrete Math., 1996, 155:99-105.
  • 5T.W. Haynes, S.T. Hedetniemi, P.J. Slater. Fundamentals of Domination in Graphs. Marcel Dekker, New York, 1998.
  • 6M.A. Henning. Singned total domination in graphs. Discrete Math., 2004, 278:109-125.
  • 7Y. Hong, J. Shu. A sharp upper bound for the spectral radius of the Nordhaus - Gaddum type. Discrete Math., 2000, 211:229-232.
  • 8E.A. Nordhaus, J.W. Gaddum. On complementary graphs. Amer. Math. Monthly, 1956, 163:175-177.
  • 9E. Shah, C. Dang and L. Kang. A note on Nordhaus - Gaddum inequalities for domination. Discrete Appl. Math., 2004, 136:83-85.
  • 10B. Zelinka. Signed total domination numbers of a graph. Czech. Math. J., 2001, 51:225-229.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部