期刊文献+

Wavelength stabilization of a 980-nm semiconductor laser module stabilized with high-power uncooled dual FBG 被引量:1

Wavelength stabilization of a 980-nm semiconductor laser module stabilized with high-power uncooled dual FBG
原文传递
导出
摘要 An optimized dual fiber Bragg grating (FBG) is proposed for 980-nm semiconductor lasers without thermoelectric coolers to restrict temperature-induced wavelength shift.The mathematical model of the temperature-induced wavelength shift of the laser with the dual FBG is built using the external cavity feedback rate equations.The external cavity parameters are optimized for achieving the stability mode-locking laser output.The spectral characteristics of the dual FBG stabilized laser are measured to range from 0 to 70 °C.The side mode suppression ratio (SMSR) is more than 45 dB,while the full-width at half-maximum (FWHM) is less than 1 nm.The peak wavelength shift is less than 0.1 nm.The dual FBG wavelength shift proportional coefficient is between 0.1086 and 0.4342. An optimized dual fiber Bragg grating (FBG) is proposed for 980-nm semiconductor lasers without thermoelectric coolers to restrict temperature-induced wavelength shift.The mathematical model of the temperature-induced wavelength shift of the laser with the dual FBG is built using the external cavity feedback rate equations.The external cavity parameters are optimized for achieving the stability mode-locking laser output.The spectral characteristics of the dual FBG stabilized laser are measured to range from 0 to 70 °C.The side mode suppression ratio (SMSR) is more than 45 dB,while the full-width at half-maximum (FWHM) is less than 1 nm.The peak wavelength shift is less than 0.1 nm.The dual FBG wavelength shift proportional coefficient is between 0.1086 and 0.4342.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2011年第3期57-61,共5页 中国光学快报(英文版)
基金 supported by the National High-Tech Research and Development ("863") Program of China (No.2006AA03Z348) the Key Program of Science and Technology Research of Shanghai Education Commission (No.10ZZ94) the Shanghai Leading Academic Discipline Project (No.S30502) the Shanghai Talents Developing Foundation (No.014)
关键词 Fiber Bragg gratings Laser mode locking Lasers Mathematical models Mode locked fiber lasers Optimization Thermoelectric equipment THERMOELECTRICITY Fiber Bragg gratings Laser mode locking Lasers Mathematical models Mode locked fiber lasers Optimization Thermoelectric equipment Thermoelectricity
  • 相关文献

参考文献25

  • 1Q. Ma, L. Xia, B. Lu, W. Xiong, Y. Zhang, X. Zhou, and X. Chen, Chin. Opt. Lett. 7, 46 (2009).
  • 2S. Hu, Y. Li, Q. Jiang, and B. Wu, Chinese J. Lasers (in Chinese) 35, 44 (2008).
  • 3M. Liang, Q. Fang, and Y. Wang, J. Optoelectron. Laser (in Chinese) 12, 821 (2001).
  • 4J.-M. Han, S.-J. Baik, J.-Y. Jeong, K. Im, H.-M. Moon, H.-R. Noh, and D.-S. Choi, Opt. Laser Technol. 39, 313 (2007).
  • 5S. Feng, O. Xu, S. Lu, X. Mao, T. Ning, and S. Jian, Opt. Laser Technol. 41, 264 (2009).
  • 6B. Wu, Y. Li, S. Hu, Q. Jiang, and H. Wang, Chinese J. Lasers (in Chinese) 36, 799 (2009).
  • 7D. Bimberg, C. Meuer, M. Lgmmlin, S. Liebich, J. Kim,E. Varene, A. Kovsh, I. Krestnikov, and G. Eisenstein, Chin. Opt. Lett. 7, 266 (2009).
  • 8C. H. L. Quay, I. Z. Maxwell, and J. A. Hudgings, J. Appl. Phys. 90, 5856 (2001).
  • 9I. Fischer, G. H. M. van Tartwijk, A. M. Levine, W. Elsasser, E. GSbel, and D. Lenstra, Phys. Rev. Lett. 76, 220 (1996).
  • 10J. S. Lawrence and D. M. Kane, Opt. Commun. 167, 273 (1999).

同被引文献6

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部