期刊文献+

Zn(OH)_4^(2-)在针铁矿(010)晶面上化学吸附结构和稳定性的理论研究 被引量:2

DFT Study of Adsorption Structures and Stability of Zn(OH)_4^(2-) on Goethite(010) Surface
下载PDF
导出
摘要 采用周期性边界条件的密度泛函理论研究Zn(OH)42-在针铁矿(010)晶面的吸附结构和稳定性,得到了Zn(OH)42-吸附前后键长的变化规律。计算结果表明:当Zn(OH)42-通过共用O原子在针铁矿表面发生吸附时,平均ZnbridgeO键长较自由Zn(OH)42-的平均Zn-O键长有增长趋势,而平均Zn-O键长则有缩短趋势;Zn(OH)42-在针铁矿(010)晶面进行化学吸附时,双角DC2吸附方式为优势吸附物种。各吸附构型的稳定性顺序为DC2>SE1>DC1>SC1>SC2。 The adsorption of Zn(OH)42- ion on goethite(010) crystal surface had been calculated by density functional theory with periodic boundary condition.The structures and stabilities of adsorption species had been studied.The variation rule of bond length changed when adsorption was obtained.The average Zn-bridgeO bond lengths tended to extend,compared to the case of isolated Zn(OH)42- in vacuum,while the average Zn-O bond lengths tended to contract.The stabilization order of all adsorption configurations of Zn(OH)42- ion was also obtained: DC2 SE1 DC1 SC1SC2.DC2 was the most stable adsorption configuration.
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期57-60,共4页 Periodical of Ocean University of China
基金 国家自然科学基金项目(20677053) 新世纪优秀人才支持计划项目(070783)项目资助
关键词 密度泛函 Zn(OH)42- 化学吸附 针铁矿 periodic boundary condition Zn(OH)42- chemical adsorption goethite
  • 相关文献

参考文献12

  • 1Pretorius P J, Linder P W. The adsorption characteristics of δ-manganese dioxide: a collection of diffuse double layer constants for the adsorption of H^+, Cu^2+, Ni^2+, Zn^2+, Cd^2+ and Pb^2+[J]. Appl Geochem, 2001, 16: 1067-1079.
  • 2Bock C W, Kaufman K A, Markham G D, et al. Manganese as a replacement for magnesium and zinc: functional comparison of the divalentions [J]. J. Am. Chem. Soc. , 1999, 121: 7360-7372.
  • 3Kallies B, Meier R. Electronic structure of 3d [M(H2O)6]^3+ ions from Sc Ⅱ to Fe Ⅲ : A quantum mechanical study based on DFT computations and natural bond orbital analyses [J]. Inorg. Chem. , 2001, 40: 3101-3112.
  • 4Schwertmann U, Cornell R M. Iron Oxides in the Laboratory: Preparation and Characterization [M]. Germany Weinheim: Wiley VCH, 1991.
  • 5Hayes K F, Roe A L, Brown Jr, et al. In situ X-ray adsorption study of surface complexes: selenium oxyanions on a-FeOOH [J]. Science, 1987, 238: 783-786.
  • 6Bolland M D A, Posner A M, Quirk J P. Zinc Adsorption by goethite in the absence and presence of phosphate [J]. Aust. J. Soil Res. , 1977, 15: 279-286.
  • 7Sheals J, Sjoberg S, Persson P. Adsorption of glyphosate on goethite: molecular characterization of surface complexes [J]. Envi ron. Sci. Technol. , 2002, 36:3090-3095.
  • 8Adelia J A, Aquino Daniel Tunega, Georg Haberhauer, et al, Quantum chemical adsorption studies on the (110) surface of the mineral goethite[J]. J. Phys. Chem. C, 2007, 111(2): 877-885.
  • 9Milman V, Winkler B, White J A, et al. Electronic structure, properties, and phase stability of inorganic crystals:A pseudopotential plane-wave study [J]. Int. J. Quant. Chem., 2000, 77 (6): 895-910.
  • 10Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximationmade simple [J]. Phys. Rev. Lett., 1996, 77: 3865-3868.

同被引文献15

  • 1GOLI E, RAHNEMAIE R, HIEMSTRA T, et al. The interaction of boron with goethite: Ex- periments and CD-MUSIC modeling[J]. Chemo- sphere, 2011, 821 1 475-1 481.
  • 2ZHANG W J, HUO C F, FENG G, et al. De- hydration of goethite to hematite from molecular dynamics simulation [J]. Journal of Molecular Structure, 2010, 950(1-3):20-26.
  • 3KUBICKI J D, PAUL K W, SPARKS D L. Pe- riodic density functional theory calculations of bulk and the (010) surface of goethite[J]. Geo- chemica! Transactions, 2008, 9 : 4-16.
  • 4LEUNG K, CRISCENTI L J. Predicting the acidity constant of a goethite hydroxyl group from first principles[J]. J Phys, 2012, 24: 124105-9.
  • 5ADELIA J A, AQUINO D T, GEORG H. Quantum chemical adsorption studies on the (110) surface of the mineral goethite[J]. J Phys Chem C, 2007, 111(2): 877-885.
  • 6OTTE K, SCHMAHL W W, PENTCHEVA R. Density functional theory study of water adsorp- tion on FeOOH surfaces [J]. Surface Science, 2012, 606(21-22): 1 623-1 632.
  • 7KERIST S, FELMY A R, ILTON E S. Density functional theory study of water adsorption on FeOOH surfaces[J]. Environmental Science Technology, 2011, 45:2 770-2 783.
  • 8KRESE G, FURTHMULLER J. Efficient itera- rive schemes for ab initio total-energy calcula- tions using a plane-wave basis set[J]. Phys Rev B, 1996, 54:11 169-11 182.
  • 9BLOCHL P E. Projector augmented-wave meth- od[J]. Phys Rev B, 1994, 50: 17 963-17 963.
  • 10PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approxi- mation for exchange and correlation[J]. Phys Rev B, 1992, 46:6 671-6 679.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部