期刊文献+

MMAS-EC算法求解旅行商问题 被引量:4

MMAS-EC algorithm for solving traveling salesman problem
下载PDF
导出
摘要 针对蚁群算法在求解旅行商问题容易出现搜索精度不高的问题,提出一种结合排出算法的最大-最小蚁群系统算法(MMAS-EC)。算法采用全局寻优和局部搜索结合的策略,利用寻优效果较好的最大-最小蚁群系统指导全局搜索方向,同时引入排出算法来探索局部解空间,并采用2-opt操作减小了排出算法对初始位置的依赖,提高了解的稳定性。仿真实验表明:结合了排出算法的最大-最小蚁群系统算法与标准蚁群算法相比,在时间开销增加较小的情况下,取得了质量更高的解。 One of the problems encountered when ant colony optimization is applied to traveling salesman problem is that sometimes this algorithm results in a lower performance.According to this problem,a new Max-Min Ant System combining with Ejection Chains is presented(MMAS-EC).A new strategy based on global search and neighborhood search is used in this algorithm.Firstly,Max-Min Ant System which performs effectively in ant colony optimization is used to guide the global search.Then Ejection Chains(EC) is introduced to exploit the neighborhood space.Because the results generated by ejection chains depend on their original state,2-opt operation is adopted,which can help avoid instability of results.Theorems and simulations show that the new MMAS-EC outperforms traditional MMAS algorithm with less time increased in all the instances.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第9期41-44,47,共5页 Computer Engineering and Applications
关键词 蚁群优化算法 旅行商问题 排出算法 最大-最小蚁群系统 ant colony optimization Traveling Salesman Problem (TSP) ejection chains max-min ant system
  • 相关文献

参考文献17

  • 1Applegate D,Bixby R, Chvatal V,et al.TSP cuts which do not conform to the template paradigm[M].Heidelberg:Springer Berlin, 2001 : 261-303.
  • 2Little J D C, Murty K G, Sweeney D W, et al.An algorithm for the traveling salesman problem[J].Operation Research, 1963,11(6): 972-989.
  • 3Rosenkrantz D E, Stearns R E, Lewis P M II.An analysis of several heuristics for the traveling salesman problem[J].SIAM Journal on Computing,1977,6(3):563-581.
  • 4Christofides N.Worstcase analysis of a new heuristics for the traveling salesman problem,388[R].Pittsburgh,USA:CamegieMelIon University, 1976.
  • 5Wang Chaoxue, Cui Duwu, Wang Zhurong, et al.A novel ant colony system based on minimum ltree and hybrid mutation for TSP[M].Heidelberg:Springer Berlin,2005: 1269-1278.
  • 6Funke B, Grtmert T, Irnich S.A note on single alternating cycle neighborhoods for the TSP[J].Journal of Heuristics,2005,11(2) : 135-146.
  • 7Stutzle T, Hoos H H.Max-Min Ant System[J].Future Generation Computer Systems,2000,16(9) :889-914.
  • 8Peseh E,Glover F.TSP ejection chains[J].Discrete Applied Mathematics, 1997,76(3) : 165-181.
  • 9TSPLIB[EB/OL].http://www.iwr.uniheidelberg.de/groups/comopt/ software/TSPLIB95/.
  • 10Dorigo M, Birattafi M, Stutzle T.Ant colony optimization[J].IEEE Computational Intelligence Magazine,2006,1:28-39.

同被引文献15

  • 1王亮,孙绍荣,吴晓层.最小化运输与库存费用的两级分销策略分析[J].系统工程理论与实践,2005,25(10):33-38. 被引量:19
  • 2焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996..
  • 3段海滨.蚁群算法原理及应用[M].北京:科学出版社,2005.12.
  • 4PESCE L F,FRAZAO C D,CIVINSKAS J, et al. The next step for a lean production : milk-run ( 2000- 01 - 3230 ) [ R ]. 2000.
  • 5CHUAH K H. Optimization and simulation of just-in-time supply pickup and delivery systems [ D ]. Lexington : University of Kentucky, 2004.
  • 6RUSDIANSYAH A, TSAO D B. An integrated model of the periodic delivery problems for vending-machine supply chains [ J]. Journal of Food Engineering ,2005,70 ( 3 ) :421-434.
  • 7CALVETE H I, GALE C, OLIVEROS M J. Bi-leVel model for production-distribution planning solved by using ant colony optimization [ J ]. Computers and Operations Research, 2011,38 ( 1 ) : 320- 327.
  • 8LIU Shu-ehu, LEE W. A heuristic method for the inventory routing problem with time windows[ J]. Expert Systems with Applications, 2001,38 (10) :13223-13231.
  • 9ZHANG Xiao-xia, TANG Li-xin. A new hybrid ant colony optimization algorithm for the vehicle routing problem [ J ]. Pattern Rocognition Letters, 2009,30 ( 9 ) : 848- 855.
  • 10Holland John H. Adaptation in natural andartificial systems: an introductory analysis with applicatiom to biology, control, and artificial intelligence[J]. USA: University of Michigan, 1975.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部