期刊文献+

移动通信网络环境下的用户运动模式挖掘 被引量:2

Mobility pattern mining in cellular network environment
下载PDF
导出
摘要 为解决移动用户运动规律获取问题,提出了一种在移动通信网络(GSM)环境下,从用户低层基站位置信息中提取出运动模式的方法.针对基站连接的振荡、重叠等问题,该方法对原始基站位置数据进行分段、窗口化、分组和聚类处理,并将原始基站位置数据表示为聚类序列.采用关联规则挖掘算法从聚类序列中提取出用户运动模式.最后,基于真实基站位置数据,通过运动路径划分实验、位置数据聚类实验和运动模式挖掘实验对系统的有效性进行了评测,并给出了系统参数设置的建议. In order to obtain the mobility regularity of mobile users,an approach is proposed for extracting users' mobility patterns from cell-based location data under cellular system,e.g.GSM(global system for mobile communications).To counter the oscillation and overlapping problem of cellular network connectivity,the raw cell-based location data is processed through segmentation,windowization,grouping and clustering,and expressed as sequences of clusters.Then,mobility patterns are extracted from the sequences of clusters based on the association rule mining algorithm.A series of experiments including route segmenting experiment,location data clustering experiment and mobility patterns mining experiment are conducted based on real-world cell phone log data to evaluate the proposed system and the suggestion of system parameters configuration is given.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第2期252-257,共6页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60703040) 浙江省科技计划优先主题资助项目(2007C13019) 浙江省自然科学基金资助项目(Y107178)
关键词 运动模式挖掘 基站位置 移动通信系统 位置感知 mobility pattern mining cell-based location cellular system location awareness
  • 相关文献

参考文献15

  • 1Dey A K, Abowd G D. CybreMinder: a context-aware system for supporting reminders [ C ]//Proceedings of International Symposium on Handheld and Ubiquitous Computing. Bristol, UK, 2000:172 - 186.
  • 2Ludford P J, Frankowski D, Reily K, et al. Because I carry my cell phone anyway: functional location-based reminder applications [ C ]//Proceedings of Conference on Human Factors in Computing Systems. Montreal, Quebec, Canada, 2006: 889- 898.
  • 3Harrington A, Cahill V. Route profiling: putting context to work [ C ]//Proceedings of Symposium on Ap- plied Computing. Nicosia, Cyprus, 2004 : 1567 - 1573.
  • 4Chen L, Lii M Q, Chen G C. A system for destination and future route prediction based on trajectory mining [ J]. Pervasive and Mobile Computing, 2010, 6 ( 6 ) : 657 - 676.
  • 5Laasonen K. Route prediction from cellular data [ C ]// Proceedings of the Workshop on Context Awareness for Proactive Systems. Helsinki, Finland, 2005 : 147 - 158.
  • 6Gonzalez M, Hidalgo C, Barabasi A. Understanding individual human mobility patterns [J]. Nature, 2008, 453(7196) : 779 - 782.
  • 7Mamoulis N, Cao H P, Kollios G, et al. Mining, indexing, and querying historical spatiotemporal data [ C ]//Proceedings of International Conference on Knowledge Discovery and Data Mining. Seattle, WA, USA, 2004 : 236 - 245.
  • 8Cao H P, Mamoulis N, Cheung D W. Mining frequent spatio-temporal sequential patterns [ C ]//Proceedings of International Conference on Data Mining. Houston,TX, USA, 2005 : 82 - 89.
  • 9Giannotti F, Nanni M, Pinelli F, et al. Trajectory pattern mining [ C ]//Proceedings of International Confer- ence on Knowledge Discovery and Data Mining. San Jose, CA, USA, 2007: 330- 339.
  • 10Hsu W J, Spyropoulos T, Psounis K, et al. Modeling time-variant user mobility in wireless mobile networks[C ]//Proceedings of International Conference on Computer Communications. Anchorage, AK, USA, 2007 : 758 - 766.

同被引文献77

  • 1万亚红,黄樟钦,陈旭辉,霍囝囝.基于主动推理的情境感知系统框架[J].计算机工程,2004,30(12):8-9. 被引量:18
  • 2陈天娇,胥正川,黄丽华.情景感知服务的用户接受模型研究[J].科技进步与对策,2007,24(2):142-147. 被引量:20
  • 3Rendle S, Gantner Z, Freudenthaler C, Schmidt-Thieme L. Fast Context-Aware Recommendations with Factorization Machines [ C] . In Proc of the SIGIR 20]]. New York= ACM Press, 2011 : 635 -644.
  • 4Averjanova O, Ricci F, Nguyen Q. N. Map - Based Interaction with a Conversational Mobile Recommender System [ C]. In Proc of the Mobile Ubiquitous Computing. Valencia: I EEE Computer Society, 2009, 212 -218.
  • 5Karatzoglou A, Amatriain X, Baitrunas L, O~iver N. Multiverse Recommendation= N-Dimensional Tensor Factorization for Context- Aware Collaborative Filtering [C]. In Proc of the Recsys 20]0. New York= ACM Press, 2010= 79 -86.
  • 6Woerndl W, Brocco M, Eigner R. Context-Aware Recommender Systems in Mobile Scenarios [ J] . Int' I Journal of Information Technology and Web Engineering, 2009, 4 (1): 6?-85.
  • 7Han B. J, Rho S, Jun S, Hwang E. Music Emotion Classification and Context-based Music Recommendation [ J] . Multimdia Tools and Applications, 2010, 4? (3): 433-460.
  • 8Kahng M, Lee S. K, Lee S. G. Ranking in Context- Aware Recommender Systems [ C ]. In Proc of the WWW 2011. New York= ACM Press, 2011:65-66.
  • 9Lee S. K, Cho Y. H, Kim S. H. Collaborative Filtering with Ordinal Scale-based Implicit Ratings for Mobile Music Recommendations [ J] . ~nformation Sciences, 2010, 180 (11) : 2142 -2155.
  • 10Ge Y, Xiong H, Tuzhilin A, Xiao K. L, Gruteser M, Pazzani M. J. An Energy- Efficient Mobile Recommender System [C]. In Proc of the KDD 2010. Washington: ACM Press, 2010:899 -907.

引证文献2

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部